
 1

  
Abstract—Dealing with uncertainty is a necessary and difficult 
aspect in operations analysis of complex systems such as the air 
transportation system. We represent these uncertainties in the 
approach process by probability distributions. This paper 
provides statistical observations of the approach and landing 
process at Detroit Metropolitan airport (DTW) for one week of 
February 2003. These probability distributions are based on 
aircraft track record data at DTW which are collected by a 
multilateration surveillance system. After explaining 
characteristics of the database and its short comings, we present 
a methodology to extract necessary statistical samples. From this, 
we obtain appropriate probability distributions for landing time 
interval (LTI), inter arrival distance (IAD), and runway 
occupancy time (ROT) presented under instrument flight rules 
(IFR) and peak traffic periods. 
 
Index Terms—Aircraft approach, probability, risk, safety, 
stochastic processes 

I. INTRODUCTION 

NDERSTANDING the stochastic behavior of the 
approach and landing process is critical to analyze 
runway separation risk and runway capacity. Statistical 

analysis is a method for this purpose. In recent years, 
multilateration systems have been installed in some airports, 
including Detroit Metropolitan Wayne County airport (DTW). 
These systems provide reasonably accurate time-position 
estimates of all transponder-equipped aircraft (a/c) operating 
in the airport vicinity in all weather conditions. These data can 
be used to obtain samples of landing process variables, such 
as the Landing Time Interval (LTI) between successive 
aircraft to the runway threshold, the Inter-Arrival Distance 
(IAD) between two successive aircraft at the moment that the 
lead aircraft crosses the runway threshold, and Runway 
Occupancy Times (ROT). ROT is the length of time required 
for an arriving aircraft to proceed from over the runway 
threshold to a point clear of the runway. This paper considers 
LTI, IAD, and ROT as (random) variables. 
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Levy et al. [1] use multilateration data of Memphis 
International airport (MEM) to obtain probability distributions 
of LTI and average landing speed conditioned on the type of 
follow-lead aircraft in visual meteorological condition (VMC). 

Probability distributions for LTI and ROT are also estimated 
by Haynie [2] for Atlanta International airport (ATL) using 
his field observations from this airport. References [3]-[5] 
provide distribution fits for Haynie’s observations, as well as 
field observations from LaGuardia airport (LGA). However, 
the sample sizes are small, and the results are not conditioned 
on aircraft weight class type, or heavy traffic times. Also, they 
have not obtained samples of IAD, which we provide here. 
Reference [6] provides analysis of IAD, LTI, and runway 
utilization in peak periods at Dallas/Fort Worth International 
Airport (DFW). They include both instrument meteorological 
condition (IMC) and VMC times in their study; however, they 
do not fit known specific probability distributions to the 
observations. They use radar data, which normally do not 
extend to the runway threshold, so they must extrapolate 
aircraft flight paths to the most likely runway threshold.  

Vandevenne and Lippert [7] develop a model to represent 
LTI and provide a probability distribution fit. This model is 
the convolution of exponential and normal distributions. 
Andrews and Robinson [8] extend the capabilities used in [6]. 
They fit probability distribution functions for LTI using the 
Vandevenne and Lippert model [7]. Rakas and Yin [9] use 
Performance Data Analysis and Reporting System (PDARS) 
database to estimate probability distribution of LTI under 
VMC in Los Angeles International Airport (LAX). For this 
purpose, they develop a PDF which they name it double-
normal distribution. 

The Center for Air Transportation Systems Research 
(CATSR) at George Mason University (GMU) has access to 
multilateration surveillance system data of DTW via Volpe 
National Transportation Systems Center, an organization 
within the US Department of Transportation. The original 
multilateration data are de-identified by Sensis Corporation, 
and the filtered data are used in this study. However, as 
discussed later, there are still some outliers, noise, and missing 
data present in the database. 

This paper introduces the characteristics and organization 
of available data and the algorithms that we have initiated to 
extract recorded data of landing times and position over the 
runway thresholds, runway exit times, and the position of the 
following aircraft when its lead crosses the runway threshold. 
Then this algorithm is used to investigate DTW data from 
Feb2, 2003 to Feb8, 2003 (in Greenwich Mean Time) in order 
to provide probability distributions for LTI, IAD, at runway 
thresholds, and ROT. Fig. 1 is a simplified diagram of this 
airport. 
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We have organized this paper as follows. Section 2 
provides details about the database structure, noise and 
outliers, and data preparation necessary to extract the required 
landing samples. Section 3 presents statistical findings and 
probability distribution fits for “peak traffic period landing 
variables” LTI, IAD, and ROT, under IMC. (In this paper, 
IMC is defined by the IMC / VMC flag in the ASPM 
database, which provides conditions at the airport.) Section 4 
presents conclusions of the study and some topics for future 
research. 

II. DATABASE STRUCTURE AND SAMPLE EXTRACTION 
PROCEDURE 

Multilateration data must be processed to perform 
probabilistic analysis of the operations. There are two 
categories of short comings with the data. First, the data 
contain noise, outliers, and missing records, and second, the 
data provide the aircraft time-position tracks but do not 
specify when aircraft cross certain positions. In this section, 
we discuss these problems and explain our strategy to extract 
necessary samples for statistical analysis of the approach 
process. 

We make use of five fields from the multilateration data 
(out of a possible eighteen): aircraft mode-s, time (t in 
seconds), longitude (X in meters), latitude (Y in meters), and 
mode-c. The mode-s field is a number of an attached 
transponder that uniquely identifies an aircraft. The 
transponder is generally attached somewhere close to the 
center of the aircraft. The mode-c field is a barometer-based 
value that can be converted to altitude (in feet) by multiplying 
it by 25 and adding 10,000 to the result. However, the 
obtained value is not very reliable for this purpose due to 
pressure change and barometer errors under for different 
weather conditions. Time and position of aircraft are recorded 
every second. For the week Feb 2, 2003 to Feb 8, 2003, the 
database includes 33,030,878 records, requiring 1GB of disk 
space. 

A. Data preparation 
The database is in Oracle format and we use SQL+ to 

obtain queries. Necessary manipulations and sample 
extractions are done in MATLAB. 

To start, we sort the Oracle data by mode-s and then by 
time. We also change the time stamp to the format “dd/mm/yy 
hh:mi:ss.” Basic queries demonstrated that the mode-s is 
missing for some records. In some cases, the mode-s of an 
entire aircraft track is missing. In other cases, we are missing 
the mode-s of only a few points along a track. We eliminate 
all of these data points. In the latter case, we retain the basic 
track path, since we can linearly interpolate the path of the 
aircraft from the other points with mode-s. In the former case, 
we discard the entire track. This may result in some inter-
arrival times that are too long. However, because of the 
available data, loosing some possible landing records does not 
significantly influence the study. 

In the database, the origin (X=0,Y=0) of the Euclidian 
coordinate is the FAA control tower located between runways 
21R and 22L, as shown in Fig. 1, and the Y axis indicates the 
true north. Runway 21L, and all other runways parallel to it, 
have a Magnetic angle of 214.8o. True North and Magnetic 
North have an angle of 6.1o W, as indicated in airport diagram 
[10]. Thus, the true angle of runway 21L is 214.8 – 6.1 = 
208.7o, or equivalently 61.3o from the X-axis. Since data are 
collected in the true coordinates, we observe the same results 
by tracking the aircraft course on the runways [11]. In the 
same manner, we calculate the true angle of runways 27L/09R 
and 27R/09L as 1.3o from the X-axis. 

To simplify working with the database, we rotate 
coordinates to make the runways parallel to the X-axis. To 
find the aircraft position in the rotated coordinates we multiply 
the observed (X,Y) position by the rotation matrix R as 
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where a is the rotation angle which is 61.3o for runways 
21L/03R, 21R/03L, 22L/04R and 22R/04L, and 1.3o for 
runways 27L/09R and 27R/09L as described before. That is, 
the aircraft position in the rotated Euclidian coordinates is 
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Using the rotation formula (2), we also transform the runway 
coordinates to the new coordinates. 

Preliminary queries and plots demonstrated some noise in 
the data. Fig. 2 is the ground projection (bird’s eye view) of 
the track plot of sample aircraft landings on runway 21L. Fig. 
2a (the lower figure) is drawn to scale, whereas Fig. 2b is 
expanded in the Yr-axis. In the figure, two aircraft exit the 
runway from the high-speed exit located after the middle of 
the runway. Based on visual investigation, the noise of X-Y 
positions is assumed to be in an acceptable range, for a given 
time, as demonstrated in Fig. 2b. In frequent cases, there are 
two or more records of a given aircraft at the same second. 
We average the records in such cases. 

Since landings are the subject of study, it is sufficient to 

 
Fig.  1. Simplified DTW airport diagram 
(http://www.airnav.com/airport/KDTW) 
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consider data in a rectangle, which we call the “query box.” 
The sides of the query box are parallel to the sides of the 
runway rectangle, and the box includes the runway and the 
common landing path extended about 10 nm from the runway 
threshold. For runway 21L, for example, we consider the 
rectangle -1350m<Xr<18500m, and -3000m<Yr<-800m. Fig. 2 
illustrates that data beyond this rectangle are dropped from the 
query. We obtained queries for every runway for the entire 
week. We transform the time stamp of each of these outputs to 
second-format with respect to a time reference. We consider 
12am on January 1, 2003 as time zero. 

Position is recorded at a second rate; however, there are 
time gaps when position is not recorded. For such cases, if the 
gap is at most 10 seconds, we linearly interpolate the time-
position of the aircraft between two boundaries of the time 
gap for every second. We do not apply this interpolation for 
the time gaps of more than 10 seconds. This procedure is 
implemented in MATLAB. 

We also need to attach wake vortex weight classes, and 
weather conditions (Instrumental Meteorological Condition 
IMC or Visual Meteorological Condition VMC) information 
to data records. In our one week sample, there are totally 1496 
distinct mode-s values. For these aircraft, we managed to 
obtain wake vortex weight class of 93% of them, of which 
67% is provided by Sensis Corporation and the rest is 
obtained by matching and search of tables of the FAA aircraft 
registration database, including MASTER, ACFTREF, and 
Aircraft Information tables. The weather condition for every 
quarter hour is reported in Aviation System Performance 
Metrics (ASPM) database in local time. Considering the time 
column of the data, we add a new column to records to 
indicate IMC and VMC weather condition. 

After data preparation in the aforementioned manner, we 
now discuss how to extract samples of random variables of the 

landing process, and compute desired landing statistics. 
Recorded data of a given aircraft might include many 
landings, departures, or fly-overs, but these operations are not 
differentiated in the database. We now introduce an algorithm 
to distinguish landings from other operations, and to calculate 
samples of LTI, IAD, and ROT samples. 

B. Algorithm to Extract Samples  
The procedure should recognize landings then extract 

necessary records through the following steps: 
1. For each mode-s, divide all records of a single aircraft 

into separate operations (landings, departures, etc). We 
suppose that a new operation begins whenever there is a 
time gap of more than 15 minutes between any two 
records of that aircraft. Any of these operations might be 
a landing, departure, fly over, or a ground operation. 

2. Check if a given operation is a landing on a given 
runway, 21L for example, by checking if it passes the 
following tests: 

• Let tmin and tmax be the first and last times for which the 
aircraft is in the “query box.” 

• If m 5,000 )X(t - )X( maxmin >t , then the aircraft 
proceeds from right to left, and has been long enough 
in the runway direction to be a candidate for a landing 
on runways 21L, 21R, 22L, 22R, 27L, or 27R. 
Similarly, if m -5,000 )X(t - )X( maxmin <t , then it is a 
candidate for a landing on runways 03R, 03L, 04R, 
04L, 09R, or 09L. 

• Check if the aircraft ever crosses the threshold of the 
specific runway and is observed over the runway 

3. Repeat step two for all operations and aircraft, and record 
their threshold time and location. Record the time and 
location of aircraft when it is first observed outside of the 
runway rectangle after landing, i.e. taxi-in time and 
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a) Drawn to scale 
Fig.  2  (a) Landing and exit track of three large a/c on/from runway 21L, (b) exaggerated version of figure (a) in Yr axis 
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location. If the aircraft track disappears over the runway, 
then exit from runway is not recorded, record zero or 
blank for the exit time. 

4. Sort landings in ascending manner, to recognize follow-
lead aircraft. Record the location of any follow aircraft at 
the moment its lead crosses the runway threshold. 

5. Calculate ROT for any aircraft, and LTI, and IAD for any 
pair of lead-follow aircraft. ■ 

Depending on the objective of a study, observations shall 
be classified based on weather condition, weight class of 
follow-lead aircraft, arrival rate, etc. 

III. LANDING STATISTICS 
We define a peak period for a given runway to be a quarter-

hour with at least seven landings on that runway. For the week 
Feb 2, 2003 to Feb 8, 2003 we observed 1862 peak period 
landings out of 4313 landings observed for the entire week on 
all twelve runways. Peak period landings are distributed 
among runways and aircraft types as shown in Table I. The 
majority of these landings occur on runways 21L and 22R. 
Only 1.4% of wake vortex weight classes of peak period 
landings could not be recognized. 

Fig. 3 shows arrival rates per quarter hour for runway 21L. 
The horizontal axis is in local time. Observations start at 
7:00pm Feb 1, 2005. Shaded periods over the time axis 
indicate IMC periods for the airport. The arrival pattern for 
runway 22R is similar to this one since the arrival traffic is 
equally directed to these two parallel runways whenever these 
runways are in the landing configuration. 

To double check completeness of observations in the 
multilateration database and to validate our data preparation 
and sample extraction algorithm, we compared the number of 

landings reported in ASPM database with the results from our 
study. The comparison plot is given in Fig. 4. Overall for this 
week, ASPM reports 160 more landings than ours. This 
corresponds to a small proportion of 3.6% (=100*160/4473) 
of ASPM records. Average and standard deviation of 
“Observed minus ASPM” rates are 0.24 and 1.7 arrivals per 
quarter-hour, respectively. This difference can be the result of 
missing mode-s and unrecorded landings that might have 
happened because of off transponders or non-transponder 
aircraft. 

To analyze system operations it is also important to know 
the proportion of follower-leader aircraft pairs. Table II shows 
this proportion for our data (peak times only), which is also 
called a transition matrix. About 59% of the landings are L-L 
aircraft. In 77.1% and 77.3% of the times a large aircraft was 

the lead and the follow aircraft, respectively.  

A. Peak time ILS Landing Probability Distributions 
In risk and capacity analysis, the pattern of the approach 

process behavior in peak periods is of interest. For this reason, 
we focus on periods during which there are seven or more 

TABLE I 
NUMBER OF PEAK TIME LANDINGS OBSERVED FROM FEB2, 2003 TO FEB8, 2003 

Runway 
a/c Type 03L 03R 04L 04R 09L 09R 21L 21R 22L 22R 27L 27R Total % 

Not Available - 1 3 - - - 11 0 0 7 1 2 26 1.4 

Small - 19 26 - - - 98 0 3 101 18 17 280 15.1 

Large - 96 158 - - - 445 1 18 483 107 111 1418 76.2 

B757 - 8 15 - - - 39 0 0 51 5 11 129 6.9 

Heavy - 0 4 - - - 1 0 1 1 0 0 7 0.4 

Total  0 124 206 0 0 0 594 1 22 643 131 141 1862 100 

 

TABLE II 
FOLLOW-LEAD AIRCRAFT TRANSITION MATRIX (% OUT OF 1805 PAIRS) IN 

PEAK PERIODS 

Follow \ Lead Small Large B757 Heavy Sum 

Small 1.7 12.5 1.2 0.1 15.5 

Large 12.8 58.8 5.4 0.3 77.3 

B757 0.9 5.4 0.6 0.0 6.9 

Heavy 0.1 0.3 0.0 0.0 0.4 

Sum 15.5 77.1 7.1 0.3 100 
In 59% of landings a large aircraft follows another large one. In 77% of the 
time a large aircraft is the following (the leading) one.  
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Fig.  3. Arrival rate to runway 21L from late Feb 1 to 8, 2003 local time 
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landings per quarter hour. Also, the approach process under 
IMC is the subject of sampling and distribution estimation in 
this paper. 

Table III is the default standard for the “approach in-trail 
threshold separation minima” under Instrument Flight Rule 
(IFR) put forth by Federal Aviation Administration. We are 
interested to know what the probability distributions of LTI 
and IAD are for class of follow-lead aircraft with the 3 nmi 
separation spacing minima indicated in Table III, i.e. pairs S-
S, L-S, B757-S, H-S, L-L, B757-L, and H-L. In specific 
situations, 3 nmi spacing standard may be reduced to 2.5 nmi 
[12]-[13]. However, differentiating these situations is not the 
subject of this paper. 

We have obtained 511 samples of IAD and 523 samples of 
LTI for the class of pairs of interest. Independence of samples 
is examined by “one-lag scatter plot” in Fig. 5 for IAD; for 
more information on statistical concepts discussed in this 
paper see, e.g., [14]-[16], for example. The plot does not 
demonstrate a specific pattern of dependency among the 
samples and one-lag correlation coefficient is 0.25.  Higher 
degrees of lags have lower correlation coefficients Thus 
independence of IAD samples, which is required for 
distribution fitting purposes, is accepted. In the same manner, 
we conclude independence of LTI samples by examining the 
one-lag scatter plot with related correlation coefficient of 0.25. 

We presented histograms and probability distribution 
function (PDF) fits for IAD and LTI in Fig. 6 and Fig. 7 with 
increments of 0.5 nmi and 15 s, respectively. For practicality, 
in fitting a distribution, we limit IAD to a minimum of 1.5 nmi 
and estimate its distribution by Erlang(1.5;0.35,6) where the 
values represent location (shift), scale, and shape parameters, 
respectively. The mean of the Erlang distribution is [(location 
par.)+ (shape par.)*(scale par.)], and the variance is [(shape 
par.)*(scale par.)2]. We use the Maximum Likelihood 
Estimation (MLE) method for this estimation and for 

estimations of LTI and ROT probability distributions. The fit 
passes Kolmogorov-Smirnov test (KS-test) for significance 
levels less than 0.10. The Log-Logistic(1.5;1.9,4.5) 
distribution provides a slightly better fit where values 
represent location, scale, and shape parameters, respectively.  

We estimated probability distribution of LTI by 
Erlang(40;11,6) when we enforce minimum of 40 seconds. 
Similar to the IAD case, the Log-Logistic(40;61,4.4) 
distribution provides a slightly better fit than Erlang 
distribution, which is a specific case of the gamma 
distribution. The Erlang fit is accepted by KS-test for 
significance levels of 0.05 or smaller. 

We have obtained 669 samples of ROT in peak IMC 
periods. We conclude that they are independent because the 
N-lag correlation coefficient, N=1, 2,… , is less than or equal 
to 0.08; also the one-lag scatter plot does not show any 
specific pattern of relationship. The histogram and two 
distribution fits for ROT samples are shown in Fig. 8. We 
estimate the distribution of ROT using three different 
distributions – gamma, beta, and normal. Using the MLE 
method, the best fits are Gamma(25;2.8,8.5) in the enforced 
range of (25,∞) s, Beta(25,110;6.1,15.4) in the enforced range 
of (25,110) s, where 3rd and 4th values represent shape 
parameters, and  N(49,8.12) in the open range of (-∞,∞). 
Gamma is the best fit among these three with the maximum 
likelihood criterion; however, the beta distribution might be 
preferred because, as in real situations for ROT, it has lower 
and upper bounds (for example it can not be negative). The 
normal distribution, which is used in [3]-[5], is rejected for 
ROT samples in the 0.1 significance level. Mean and variance 

TABLE III 
IFR APPROACH IN-TRAIL THRESHOLD SEPARATION MINIMA (NMI) 

Lead a/c 
Follow a/c Small Large B757 Heavy 
Small 3 4 5 6 
Large 3 3 4 5 
B757 3 3 4 5 
Heavy 3 3 4 4 

 

 
Fig.  5.  The one-lag scatter plot of peak-IMC period IAD of pairs with 3 nmi 
separation standard (511 samples). The one-lag correlation coefficient is 
0.25. Correlation coefficients for higher degrees of lags are smaller. 

Fig.  7. LTI histogram and distribution fits for 523 samples. Erlang(40;11,6) 
has the mean 106 and standard deviation 27 seconds. 

Fig.  6. IAD histogram and distribution fits for 511 samples. Sample mean is 
3.6 and standard deviation is 0.88 nmi. Erlang(1.5;0.35,6) fit has the mean
3.6 and standard deviation 0.86 nmi.  
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We also want to know if ROT is different under IMC and 
VMC weather conditions. Fig. 9 shows histograms of ROT 
under VMC and IMC for the runways with similar taxiway 
configurations, i.e. 21L/03R and 22R/04L. The structure of 
runways 27L and 27R seems to be different from 21L/03R 
and 22R/04L, as also seen in Table IV.  

Visual inspection of the figure does not suggest any 

significant difference between IMC and VMC ROT for this 
week of data. (Here, IMC / VMC is only distinguished by the 
corresponding flag in the ASPM database. We have not 
conditioned on other complementary variables, like surface 
visibility, which might also affect ROT. Thus, data from a 
different week in which surface visibility is reduced might 
show a distinction between IMC / VMC.)  From the data, the 
average and standard deviation of ROT in VMC are 50 s, and 
9 s, respectively. In IMC, the average and standard deviation 
are 49 s, and 8 s. 

Also of interest is the probability (or frequency) that the LTI 
between two consecutive aircraft is less than the ROT of the 
leading aircraft. We represent this probability by P{LTIk,k+1< 
ROTk}, k=1, 2, …,  and name it “runway-related approach 
risk.” Fig. 10 shows pairs of observations (LTIk+1,k, ROTk) 
observations which is the ROT of the lead aircraft k versus the 

LTI between aircraft k and k+1 for peak period landings. We 
have limited LTI in the figure to 200 seconds for the purpose 
of clarity. In this figure, there are two observations having 
ROT of 105 s which correspond to landings on runway 27R in 
VMC. They are exceptional cases since they are far from other 
sample population and we consider them as outliers. They are 
19 s bigger than the second largest sample 86 s, for example. 

Fig. 10 also demonstrates independence of LTIk,k+1 and 
ROTk., for all k. The Kendall “sample-correlation statistic,” 
which measures dependency in non-parametric statistics, is 
0.085 and supports independence of these random variables; 
for more discussion on this parameter see [16]. The sample 
correlation coefficient is 0.15 and also confirms the 
independence hypothesis.  

Now we provide an empirical and a theoretical “point 
estimation” for P{LTIk,k+1< ROTk}, k=1, 2, …,  in peak periods 
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Fig.  9. Histogram of ROT under VMC (895 samples) vs. IMC (590 samples) 
for runways 21L/03R and 22R/04L. We can not observe significant 
difference between IMC and VMC samples. 

TABLE IV 
ROT IN PEAK PERIODS FOR LANDING RUNWAYS  

Runway Statistic VMC IMC 

N 60 30 
Range (s) [33,68] [32,64] 
Avg (s) 48 47 

03R 

Std (s) 7 8 

N 63 91 
Range (s) [40,60] [39,68] 
Avg (s) 48 49 

04L 

Std (s) 6 6 

N 271 148 
Range (s) [31,70] [29,72] 
Avg (s) 45 48 

21L 

Std (s) 8 10 

N 22 - 
Range (s) [40,79] - 
Avg (s) 55 - 

22L 

Std (s) 9 - 

N 283 171 
Range (s) [26,72] [39,70] 
Avg (s) 53 50 

22R 

Std (s) 6 6 

N 60 38 
Range (s) [38,58] [39,60] 
Avg (s) 48 48 

27L 

Std (s) 5 5 

N 72 26 
Range (s) [38,105] [36,84] 
Avg (s) 57 54 

27R 

Std (s) 12 11 

N 828 504 
Range (s) [26,105] [29,84] 
Avg (s) 49 49 

Total 

Std (s) 8 8 
Overall, from this table, we can not observe significant difference between 
ROT under IMC and VMC. Based on the sample, runway 27R has higher 
mean and variability than other runways. 

Fig.  8. Peak-IMC periods ROT histogram and distribution fits for 669
samples for all aircraft types. Sample mean and standard deviation are 49.1, 
and 8.1 s. Beta(25,110;6.1,15.4) fit has the mean 49.1, and standard deviation 
8.1 s.  
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for pairs of aircraft with separation standard 3 nmi in table III.  
1) Empirical Method: There are three points above the 45 

degree line. These points represent events where 
LTIk,k+1<ROTk.. The sample frequency is 0.0016 with respect 
to 1862 peak period landings. (Out of 1862 landings, there 
were 108 landings for which we could not obtain the ROT due 
to disappearance of the aircraft track over the runway. This 
might be because the aircraft turned off the transponders or 
for other reasons. 44 of these lost data happened in IMC and 
64 in VMC. We assume that these landings would not have 
been above the 45 degree line in the figure.) 

The frequency of LTIk,k+1 < ROTk, for k=1,…,4312, is 
0.0007 - that is, 3 out of 4313 landings, assuming that no such 
event occurred in non-peak periods. As shown in Fig. 10, for 
1 (for 2) out of 625 IMC (1076 VMC) landings we have 
LTIk,k+1<ROTk, i.e. the estimated probability of 0.0016 
(0.0019). 

2) Theoretical method: We use the probability distribution 
fits that we calculated as ROT~Beta(6.1,14.5) in the range 
(25,110), and LTI~Erlang(40;11,6) to estimate P{LTI<ROT}. 
Fig. 11 shows the overlap of these probability distributions. 
Because there is an overlap between LTI and ROT, then 
P{LTI<ROT} is positive. We note that in fitting the PDF for 
LTI, we have not considered samples of LTI that we could not 
obtain their corresponding ROT. Let gROT(·) represent PDF of 
ROT, and FLTI(·) represent Cumulative Density Function 
(CDF) of LTI. Then, 
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Equation (4) cannot be evaluated analytically for the 
distributions we have chosen. We estimate (4) using stochastic 

simulation. The result is 0.004, as a point estimation for the 
pairs of interest in peak-IMC period.■ 

We see that the theoretical estimation 0.004 is about 2.5 

times of the empirical estimation 0.0016 for peak-IMC 
periods. We shall note that these estimations are optimistic 
firstly because we have missed about 3.5% of total landings 
based on the ASPM, and secondly we could not obtain ROT 
for 44 out of 669 peck-IMC landings. These two effects may 
have added to P{LTI<ROT}, i.e. may have had bigger LTI 
than ROT of their leading aircraft. 

IV. CONCLUSIONS 
We presented an efficient way to use multilateration 

surveillance system data taking into account and analyzing 
noise, errors, and missing data. We obtained the wake vortex 
weight class of 98.6% of aircraft landing in peak periods. We 
added this information to the multilateration data along with 
the meteorological conditions that we obtained from the 
ASPM database. We gave an algorithm to extract samples of 
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Fig.  11. Overlap of ROT and LTI. We obtain point estimation 0.004 for 
P{LTI<ROT}. The estimation would be slightly smaller if we chose log-
logistic distribution for LTI. 
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Fig.  10. Runway Occupancy time of aircraft k, ROTk , versus Landing Time Interval between aircraft k and k+1, LTIk,k+1. In this figure, pairs of follow-lead 
aircraft are not differentiated based on their weight class. For three points above 45 degree line, LTIk,k+1 is less than ROTk one of which has occurred under IMC. 
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random variables LTI, IAD, and ROT from the data. The 
samples were conditioned on IMC times and peak traffic 
periods in which there were seven or more landings per 
quarter hour on a given runway. Also, LTI and IAD were 
additionally conditioned based on follower-leader wake vortex 
weight class and aggregated for ones with a minimum 
separation standard of 3 nmi – namely, pairs S-S, L-S, B757-
S, H-S, L-L, B757-L, and H-L. 

The data supported our assumption that samples of each 
random variable were independent. We represented the PDF 
of LTI, IAD, and ROT by a few known density functions and 
compared their performance. Fitting distributions to the 
collected samples showed that ROT is best represented by a 
beta distribution, but not with a normal distribution, which is 
generally assumed in the literature. LTI, and IAD, for the F-L 
pairs of under study, were best fit by log-logistic distributions; 
however, Erlang (gamma) distribution was also accepted for 
these random variables. We preferred to use the Erlang 
distribution rather than the log-logistic distribution because it 
is better known and has enough accuracy to represent 
behavior of LTI and IAD. We also showed that LTI between 
the leading and following aircraft is independent of ROT of 
the leading one. Our overall observations suggested that there 
was almost no difference of ROT between IMC and VMC 
conditions, for the particular week observed at DTW. We 
estimated the probability (or frequency) of LTI<ROT in peak-
IMC periods with empirical and theoretical calculations. 

Investigation of data for longer time periods, e.g. one 
month, and for a visual landing system (VFL) at this airport 
and other airports can be the subject of future studies. 
Providing methodologies to incorporate incomplete data of 
(LTI, ROT) with missing ROT in estimation of “runway-
related risk” can be a research problem. Distribution of other 
random variables in the approach process, such as time 
between exits from the runway, and inter arrival times to the 
terminal radar approach control (TRACON) area, are subjects 
for future research. 

DISCLAIMER 
This paper solely represents the opinions of the authors and 

does not necessarily reflect the opinion of the United States 
government or NASA. 
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