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Abstract 
This research is driven by the critical need 

for a technological breakthrough in taxi-out 

prediction, and intelligence-based decision making 

capabilities for an airport operating system. With 

the advent of sophisticated automation, the use of 

information-driven intelligent decision support 

system (IIDSS) to control service operations such 

as airport has become a necessity to ensure 

efficiency and throughput. However, airlines, 

airports, and air traffic controller (ATC), still lack 

the use of intelligent systems that can assist them in 

delay prediction, schedule adjustments, and optimal 

decision making in the face of uncertainties. As per 

U.S. Govt. Joint Program Development Office’s 

roadmap, new technology is needed to accurately 

predict delays and efficiently utilize the existing 

capacity to support the Next Generation Air 

Transportation System (NGATS). Hence, new 

research is needed to accurately predict taxi-out 

times which in turn can assist in making schedule 

adjustments to reduce congestions and delays, and 

provide a means for better utilization of ground 

staff of the airlines. We propose a novel 

reinforcement learning (RL) based stochastic 

approximation scheme for predicting taxi-out times 

that was tested on data from Detroit Metropolitan 

Wayne County International Airport (DTW). Initial 

results show that the average prediction error for 

>80% of the flights are <3 min.    

Introduction 
Flight delays are one of the most pressing 

problems that have far reaching effects on both the 

society and nation’s economy. The United States 

National Airspace System (NAS) is one of the most 

complex networked systems ever built, and has 

several components to it. The major components 

include the administration, control centers, airports, 

airlines, aircrafts, and passengers. The complexity 

of NAS poses many challenges for its efficient 

management and control. One of the challenges 

includes reducing flight delays. Delays propagate 

throughout the system and it increases with time 

over the length of the day. This is known as the 

cascading effect and it means that there are fewer 

delays in the morning than in the evenings. Delays 

result in losses for the airlines via cancellations, 

increased passenger complaints, and difficulty in 

managing the airline and airport operations since 

both gate operations and air traffic controllers 

(ATC) could simply be overwhelmed at certain 

peak hours by too many take-offs and landing 

aircrafts. Delays are caused by several factors. 

Some of these include increases in demand, near 

capacity operation of the major hubs (leads to 

congestion), weather, and air traffic management 

programs such as the ground delay program (GDP). 

GDP is said to be in effect, when an aircraft is held 

at the gate of the origin airport due to delays 

experienced at the destination airport. Hence, it is 

necessary for all stakeholders (the Federal Aviation 

Administration (FAA), airlines, Passengers (PAX), 

and the ATC) to stay informed, understand the 

causes, and find solutions to predict and mitigate 

the delays. The delay phenomenon is continuously 

evolving, and is both stochastic and elastic. The 

stochastic nature is due to the uncertainties that lie 

at the local level (such as the local control tower, 

arrival/departures movements on ground, human 

causes), system level (such as GDP), and in the 

environment (weather). The elastic behavior is due 

to the fact that delay could be adjusted (positively 

or negatively) by flying speed, taking alternate 

routes, turnaround time on the ground, position in 

the departure clearance queue especially during 

busy hours of the airport. Thus, total delay of a 

flight segment from its origin to destination 

comprises of turn-around time delay, gate-out 

delay, taxi-out delay, airborne delay, taxi-in delay, 

and gate-in delay. Among these delay elements, 

historical data indicates that, taxi-out time 

contributes to over 60% of the total delay. Hence, it 

is imperative to minimize taxi-out delay, which we 

believe has a significant impact on the efficiency of 

airport operations and on the performance of the 

entire NAS. 

 

In order to minimize taxi-out delay, it is 

necessary to accurately predict taxi-out under 

dynamic airport conditions. This information in 

turn will allow the airlines to better schedule and 

dynamically adjust departures, which minimizes 

congestions, and the control towers will benefit 

from smoother airport operations by avoiding 

situations when demand (departure rates) nears or 

exceeds airport capacity. There is also a great 

potential for increased and efficient utilization of 

the airport capacity, which is one of the key focus 

items of NGATS, as per the report from Joint 
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Program and Development Office (JPDO) [1]. This 

will also lead to significant improvement in the 

capabilities for Flow Contingency Management 

and Tactical Trajectory Management, and will 

benefit the implementation of an holistic Total 

Airport Management (TAM) system [11]. As an 

example of a future concept of automating airport 

control towers and Terminal Radar Control 

(TRACON) operations, it will be necessary to 

predict airport dynamics such as taxi-out times, and 

feedback this information for aiding artificial 

intelligence-based decision making at airport 

operational level. Improved taxi-out time prediction 

can be used by airline operating centers (AOC), 

and airline station operations to increase utilization 

of ground personnel and resources. 

 

The primary objective of this research is to 

accurately predict ground delays (taxi-out time) at 

major airports, in the presence of weather and other 

unexpected events, by developing and validating a 

artificial intelligence based RL model (a strand of 

Approximate Dynamic programming, ADP). The 

taxi-out prediction problem is cast in the 

framework of probabilistic dynamic decision 

making and is built on the mathematical 

foundations of dynamic programming, and machine 

learning. The methodology is tested using data 

from the Aviation System Performance Metrics 

(ASPM) data base maintained by Federal Aviation 

Administration (FAA). In particular the study was 

conducted on ASPM data for Detroit Metropolitan 

Wayne County Airport (DTW). In the next section 

we review some of the related literature in the area 

of taxi-out prediction and artificial intelligence 

based prediction and control methods. 

Motivation and Related Literature 
 Many recent studies have proposed different 

methods to predict and then use the prediction to 

minimize taxi-out times. One such study is to 

predict gate push back times using Departure 

Enhanced Planning And Runway/Taxiway-

Assignment System (DEPARTS) [2], in which the 

objective for near-term departure scheduling is to 

minimize the average taxi-out time over the next 10 

to 30 minutes, to get flights into the air from the 

airport as early as possible without causing 

downstream traffic congestion in the terminal or en 

route airspace. DEPARTS uses a near-real time 

airport information management system to provide 

its key inputs, which it collects from the airport’s 

surface movement advisor (SMT), and 

recommends optimal runway assignment, taxi 

clearance and takeoff clearance times for individual 

departures. The sensitivity of taxi-out delays to gate 

push back times was also studied using DEPARTS 

model. Other research that develops a departure 

planning tool for departure time prediction is 

available in [3]-[7], [12], [14]. Direct prediction of 

taxi-out times has been presented to literature. Such 

direct predictions attempts to minimize taxi-out 

delays have been done using accurate surface 

surveillance data [8] [9]. One such work is 

presented in [10] which uses surface surveillance 

data develops a bivariate quadratic polynomial 

regression equation to predict taxi time. In this 

work data from Aircraft Situation Data to Industry 

(ASDI) and that provided by Northwest Airlines 

for DTW (Flight Event Data Store, FEDS) were 

compared with surface surveillance data to extract 

gate OUT, wheels OFF, wheels ON, and gate In 

(OOOI) data for prediction purposes. Algorithms 

such as space time network search which uses 

Dijkstra’s algorithm and event based A* algorithm 

and co-evolution based genetic algorithm have 

been compared for taxi-time prediction in [15]. 

Cheng et al. [18] studied aircraft taxi performance 

for enhancing airport surface traffic control in 

which they consider the surface-traffic problem at 

major airports and envisions a collaborative traffic 

and aircraft control environment where a surface 

traffic automation system will help coordinate 

surface traffic movements. Specifically, this paper 

studies the performance potential of high precision 

taxi toward the realization of such an environment. 

A state-of-the-art nonlinear control system based 

on feedback linearization is designed for a detailed 

B-737 aircraft taxi model. Other research that has 

focused on departure processes and departure 

runway balancing are available in [13] and [19]. 

Many statistical models have evolved in recent 

years which considers the probability distribution 

of  departure delays and aircraft take-off time for 

taxi-time prediction purposes [17] [20]. For 

example, queuing models have been developed for 

taxi time prediction as in [16]. A Bayesian 

networks approach to predict different segments of 

flight delay including taxi-out delay has been 

presented in [21]. 

 

 With the advent of sophisticated automation 

techniques and the need to automate airport 

functions for efficient surface flow movements, the 

use of information-driven intelligent decision 

support system (IIDSS) to predict and control 

airport operations has become a necessity. 

However, industry still lacks the use of intelligent 

reconfigurable systems that can autonomously 

sense the state of the airport and respond with 

dynamic actions continuously. Thus, in many cases 

decisions are still dependent on human 

intervention, which are based on local 

considerations, which are often not optimal. One of 

the primary reasons for this deficiency is the lack 

of comprehensive tools for achieving ‘automation 

in decision making’ and validated procedures that 
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can simultaneously look at the whole system 

dynamics, account for uncertainties, and suggest 

optimal decisions, which can be used by airline and 

traffic controllers to improve the quality of airport 

operations. As a first step in the direction of 

developing such an IIDSS for the entire airport, this 

paper presents a novel method that uses artificial 

intelligence to predict taxi-out time, which can be 

fed back for making optimal schedule adjustments 

to minimize taxi-delays and congestions. This 

approach overcomes many limitations of regression 

model based approaches with constant parameters 

that are not suitable in the presence of adverse 

events such as weather that affect airport 

operations. Another limitation arises due to the 

complex nature of airport operations and the 

uncertainties involved, which often make it 

difficult to obtain mathematical models to describe 

the complete airport dynamics. In such situations 

model-free learning based techniques can perform 

better that model based approaches. A unique 

feature of this model free approach is its adaptive 

nature to changing dynamics of the airport.  

 

 Learning-based model-free prediction and 

control systems, though has been in existence, its 

potential has not been fully explored. The word 

model-free is often a misnomer since it is 

understood as a lack of mathematical construction. 

Typically, these systems use some form of artificial 

intelligence such as neural networks, fuzzy-logic 

rules, and machine learning and have very strong 

mathematical foundations underlying their 

construction. These intelligent controllers have 

been tested on robots and hierarchical 

manufacturing systems as well. Some of these 

systems, particularly neural networks and fuzzy-

logic rules, though are claimed to be model-free, do 

contain certain hidden or implicit models, and 

make certain strong modeling assumptions when it 

comes to proving the stability of the controller. 

Hence, data-driven machine-learning-based 

controllers (presented below) are preferred, and 

they have been shown to be more effective than 

neural networks and fuzzy-logic based controllers. 

However, their wide spread use in the industry has 

been limited due to the lack of comprehensive 

studies, implementation procedures, and validation 

tests. The above types of learning-based prediction 

and control can be further classified based on three 

major learning paradigms. These are supervised 

learning, unsupervised learning and reinforcement 

learning (a strand of ADP).  

 

Neural network based prediction and control 

schemes use supervised or unsupervised learning. 

In a supervised learning, the learner is fed with 

training data of the form (xi, yi) where each input xi 

is usually an n-dimensional vector and the output yi 

is a scalar. It is assumed that the inputs are from a 

fixed probability distribution. The aim is to 

estimate a function f in yi=f(xi) so that the yi can be 

predicted for new values of xi. For a successful 

implementation of neural network using supervised 

learning, the training data samples must be of good 

quality without noise. The learning of the weights 

on the network arcs during training is usually done 

using the backpropagation algorithm. In 

unsupervised learning there is no a priori output. 

The network self organizes the inputs and detects 

their emergent properties. This is useful in 

clustering and data compression but not very useful 

in control where corrective actions based on 

outputs are desired. The model-free (information-

driven) reinforcement learning-based (RL) control, 

a simulation-based optimization technique, is 

useful when examples of desired behavior is not 

available but it is possible to simulate the behavior 

according to some performance criteria. The main 

difference from supervised learning is that there is 

no fixed distribution from which input x is drawn. 

The learner chooses x values by interaction with the 

environment. The goal in RL is not to predict y but 

to find an x* that optimizes an unknown reward 

function R(x). The learning comes from long term 

memory. In what follows we describe the 

advantages of reinforcement learning-based 

control. 

 

Why a Reinforcement Learning-Based 

Model-Free Prediction and Control? 
 

 These RL-based prediction and control 

methods are built on strong mathematical 

foundations of approximate dynamic programming 

(ADP) are an excellent way to obtain optimal or 

near-optimal control of many systems. They have 

certain unique advantages. One of the advantages is 

their adaptive nature and flexibility in choosing 

optimal or near-optimal control action from a large 

action space. Moreover, unlike traditional process 

controllers, they are capable of performing in the 

absence of process models and are suitable for 

large-scale complex systems. They can also be 

trained to possess auto-reconfigurability. 

 

Machine learning based controllers use 

stochastic approximation (SA) methods, which 

have been proved to be effective for control of non-

linear dynamic systems. In this method the 

controller is constructed using a function 

approximator (FA). However, it is not possible for 

a model-free framework to obtain the derivatives 

necessary to implement standard gradient-based 

search techniques (such as back-propagation) for 

estimating the unknown parameters of the FA. 

Usually such algorithms for control applications 

rely on well-known finite-difference stochastic 
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approximations (FDSA) to the gradient. The FDSA 

approach, however, can be very costly in terms of 

the number of system measurements required, 

especially in high-dimensional problems for 

estimating the parameters of the FA vector. This 

led to the development of simultaneous 

perturbation stochastic approximation (SPSA) 

algorithms for FA, which is based only on 

measurements of the system that operates in 

closed-loop [23]. Among the several variants and 

applications of SPSA, the implementation of SPSA 

in simulation-based optimization using RL offers 

several advantages in solving many stochastic 

dynamic sequential decision-making problems of 

which the prediction and control problem is a 

subset. RL (a strand of ADP) is a method for 

solving Markov decision processes (MDP), which 

is rooted in the Bellman [24] equation, and uses the 

principle of stochastic approximation (e.g. 

Robbins-Monro method [25]). Howard first showed 

how the optimal policy for a MDP may be obtained 

by iteratively solving the linear system of Bellman 

equations. Convergent average reward RL 

algorithms can be found in [26].  

 

 In what follows we demonstrate the 

reinforcement learning (RL) based taxi-out 

prediction methodology. 

 

RL Based Prediction Methodology 
 

 The RL based functional block diagram for 

taxi-out prediction is shown in Figure 1. The 

system state X = (x1,x2,x3,x4) is defined as the 

number of flights in the departure queue waiting for 

take off (x1), number of departing flights taxiing 

(x2), number of arriving flights that are taxiing (x3) 

and the average taxi time in the last 30 minutes 

from current time (x4). A flight is said to be 

waiting in the departure queue if it has exceeded 

the nominal taxi time and has still not departed. 

The purpose of the RL estimator is to predict taxi 

out time given the dynamic system state. The 

dynamic system state evolution is modeled as a 

Markov chain and the prediction process is 

modeled as a Markov decision process. The MDP 

process is solved using RL based stochastic 

approximation schemes. The input to RL is the 

system state and the output of the learning process 

is a reward function R(X,P) where P is the 

predicted taxi out values. The utility function 

(reward) R(X,P) is updated based on the difference 

between the actual an predicted taxi-out values. 

Mathematical details of the RL based prediction 

methodology are available in [22] and is not 

presented here for the sake of brevity. 

 

 As seen from Figure 1, the scheduled 

arrivals and departures up to t+45 minutes was 

used to obtain the system state X where t is the 

current time. Prediction was done for flights in a 

moving window of length t to t+15 minutes. This 

means that for each departing flight in the 15 

minute interval from current time, the airport 

dynamics was simulated for 30 minutes from its 

scheduled departure time. The window is then 

moved in 1 minute increments and all flights in the 

window are predicted again. This means that every 

flight, unless it leaves before scheduled time, its 

taxi-out time will be predicted at least 15 times. To 

calculate average taxi-out times before current time 

t, actual flight data between t and t-30 are used.  

 

 

 

 

 

Figure 1: RL Based Functional Block Diagram for Taxi-Out Prediction 
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Data Source 

 
OOOI data for DTW airport was extracted 

from the Aviation System Performance Metrics 

(ASPM) data base maintained by Federal Aviation 

Administration (FAA). The data from 1st May 2006 

to 26th July 2006 was used to train the RL based 

Taxi-out time predictor. Testing was done on data 

from July 27
th

 to July 31
st
 2006 and on Jan 2006 

data. 

 

The following were extracted from the 

ASPM database for each individual flight: flight 

number, actual on time (ACTONTM), actual in 

time (ACTINTM), actual out time (ACTOUTTM), 

actual off time (ACTOFFTM), scheduled out time 

(SCHOUTTM), actual taxi out time (ACTTO), 

actual taxi in time (ACTTI), nominal taxi in time 

(NOMTI), and nominal taxi out time (NOMTO). 

 

Model Evaluation 
 

A common model valuation metric is the 

mean square error (MSE) between the actual and 

predicted taxi-out values. Also mean, median and 

standard deviation of the actual and predicted taxi-

out times were compared. The RL based estimator 

was coded using Matlab software.  

 

Results from Prediction Analysis 
 

 In this section we present some of the 

preliminary results obtained from using our RL 

based methodology for predicting taxi out time. 

  

 Figure 2 shows a plot of departure and 

arrival demand and actuals (ETMS values) plotted 

along with the airport arrival (AAR) and departure 

(ADR) rates per quarter (15 minute time intervals) 

for data collected on 1
st
 May 2006. An obvious 

pattern is the increase and decrease in arrival and 

departures that are almost staggered. A peak (dip) 

in departure is in a different quarter in comparison 

to the nearest arrival peak (dip). The difference 

between the departure peak (dip) and the nearest 

arrival peak (dip) is only 1-2 quarters. 

 

 The airport operated above its ADR and 

ARR many times in a day as shown by the ETMS 

values which have exceeded the ADR and ARR 

limits. Interestingly, the ETMS values follow the 

same pattern as the demand curves. This shows that 

the ATC has tried to meet the demand (arrival and 

departure) and at times have operated above the 

ADR and ARR to meet this demand. It was also 

noted that some days in May had high average taxi 

out time and some had low. However, the ADR and 

ARR were the same for such days. Hence, ADR 

and ARR was not used as a factor for prediction 

purposes. This means our TO calculations are 

based on schedules that are already affected by 

ADR and ARR. 

 

 

 

Figure 2: Arrival And Departure Demand Per 

Quarter 

From Figure 3, It is interesting to observe that there 

is strong correlation between taxi-out time and 

factors that influence it. These factors include 

 

• Number in departure queue (A flight is 

considered in queue if its real time TO has 

exceeded its unimpeded TO and the flight has 

still not taken off with respect to current time.) 

• Number of departing flights that are taxiing 

queue (A departing flight is considered taxiing 

if its real time TO has not exceeded its 

unimpeded TO and the flight has still not taken 

off with respect to current time.) 

• Number of arriving flights that are taxiing (An 

arriving flight is considered taxiing if its real 

time TI is before current time but Gate in has 

not occurred.) 

 

As an example, take a flight at 8 AM GATE OUT 

(see bottom picture in Figure 3). You will notice 

that the Taxi out is decreasing (indicated as L) for 

flights between 8 and 8: 30 AM. You will notice 

that the factors above are also decreasing (at a low 

value) in the top picture of Figure 3 for the same 

time period. Also the ETMS departure and arrival 

is also at a low from Figure 2 for the same time 

period. They are all correlated. 

 

Similarly from Figure 2 ETMS departure and 

arrival are at a low at around 9:45, 11:30, 13:00, 

2:45, 4:45, 18:00, 20:30, 22:00 hours. The H and L 

of Figure 3 match one-on-one to this pattern. 
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Also, it can be observed that the red line lags 

behind the blue in Figure 3 (top picture). This 

shows the queue builds as number of taxiing flights 

increase beyond a threshold. Clearly the above 

factors influence taxi out time and are used in 

system state. It also shows that it’s necessary to 

consider the behavior of the above factors over a 

time period (say 30 min) from the scheduled gate 

out time to make an accurate prediction of taxi out 

time based on predicted airport dynamics. It will be 

incorrect to predict taxi out by looking at the 

ground condition only at the instant of departure. 

 

As mentioned earlier for a 15 min interval 

there will be 15 predictions for each flight, unless 

the flight leaves earlier than the scheduled time. 

These 15 predicted values can be combined into a 

single value by averaging or weighted averaging. 

This weighted value will be compared with actual 

taxi out time to obtain mean square error.   

 

Figure 3: Plot of # of taxiing flights, queue length, and actual taxi out times for May 1st 2006. 

 

Due to lack of gate and runway allocation 

information from ASPM database, if 2 runways are 

for departures, then a queue size of 15 would mean 

about 7-8 flights in each runway. It is assumed that 

runways are used equally. It is also assumed that 

the nominal TO time is an indicator of the nearness 

of the runway from the gate. Accuracy of 

predications will be improved if exact gate and 

runway allocations are obtained. Also size of 

aircraft was not considered in the prediction 

algorithm. 

 

Figure 4 shows the histogram of actual and 

predicted taxi out time for July 28th 2006. It can be 

observed that the spread of the predicted values are 

less than the actual. This also observed from the 

standard deviation values of actual and predicted 

taxi out times in Table 1.  

Date: July 2006 27 28 29 30 31 

Mean actual taxi 

out time 19.59 16.27 15.93 17.70 17.04 

Std. dev. actual 

taxi out time 6.89 5.08 4.90 5.83 5.12 

Mean predicted 

taxi out time 17.07 16.80 16.22 17.27 17.13 

Std. dev. 

predicted taxi out 

time 3.04 2.50 2.59 3.04 2.77 

Median actual 

taxi out time 18.00 16.20 15.00 16.80 16.20 

Median predicted 

taxi out time 17.00 16.88 16.20 17.45 17.15 

% flights with 

MSE <3.0 73.00 82.00 82.00 78.00 79.00 

MSE 3.04 2.83 2.90 3.19 2.92 

Table 1: Taxi out prediction metrics for July 27-

31 2006 
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 In general it was observed that the prediction 

was not accurate for flights with high taxi out times 

of >25 minutes. These account for about 10-15% of 

flights in a day. Also, from Table 1, if the MSE 

were to be restricted to <3 min, only about 80% of 

the flights would satisfy this criteria. It is to be 

noted that all flights (commercial, cargo) were 

considered, and an outlier analysis was also not 

done. Hence, there is a scope for improvement in 

prediction accuracy with more learning data and 

eliminating flights with >35 minutes taxi out times 

during the learning phase. 

 Figure 4: Histogram for actual and predicted 

Taxi out time for July 28
th 

2006. 

 

 

Figure 5: Actual (red) and predicted (blue) Taxi 

Out Time for July 28
th

 2006 

Figures 5 and 6 shows actual and predicted 

taxi out times for July 28
th

 and 27
th

 2006, 

respectively. It can be observed that there are many 

flights exceeding 25 minutes of actual taxi out time 

and July 27th has a higher average taxi out time than 

July 28
th

. This is also indicated in Table 1. 

Correspondingly the prediction of taxi out times for 

July 27th is less accurate than July 26th for flights 

having >25 min actual taxi out time.  

 A similar prediction was done for flights in 

the month of January 2006 and similar results were 

obtained. It is to be noted that the above findings 

are preliminary results from our ongoing research. 

Further analysis to capture seasonal trends and 

incorporation of runway and gate assignments 

could improve prediction accuracy. Also study of 

other majors hubs are part of ongoing research. 

 

 

Figure 6: Actual (red) and predicted (blue) Taxi 

Out Time for July 27th 2006 

 

Conclusions 

 This paper presents a new artificial 

intelligence based taxi out time prediction 

technique that adapts to changing airport dynamics. 

The method is based on the theory of stochastic 

dynamic programming and is solved using 

reinforcement learning techniques. Initial results 

presented show high correlation of taxi out time 

with queue time, and number of arriving and 

departing flights that are taxiing. Using data from 

ASPM database, approximately 80% of the flights 

were predicted with a MSE of less than 3 min. The 

predicted standard deviation is also less than 3 min 

for all flights in a given day. It is expected that both 

control tower operations and airline scheduling can 

benefit from this prediction by adjusting schedules 

to minimize congestion and delays, and by better 

utilization of ground personnel and resources. 

Accurate taxi out predication that results in 

minimized delays and better scheduling can also 

impact air traffic flow management both on ground 

and in air across the entire NAS in the US and 

worldwide. It can be integrated to support the 

futuristic Total Airport Management concepts 

beyond Collaborative Decision Making (CDM) that 

envisions automation of several airport operations.  
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