

Abstract— Ordinal Optimization has emerged as an efficient
technique for simulation and optimization. Exponential
convergence rates can be achieved in many cases. A good
allocation of simulation samples across designs can further
dramatically improve the efficiency of ordinal optimization by
orders of magnitude. However, the allocation problem itself is
a big challenge. Most existing methods offer approximations.
Assuming the availability of perfect information, we
investigate theoretically optimal allocation schemes for some
special cases. We compare our theoretically optimal solutions
with existing approximation methods using a series of
numerical examples. While perfect information is not available
in real life, such an optimal solution provides an upper bound
for the simulation efficiency we can achieve. The results
indicate that the simulation efficiency can still be further
improved beyond the existing methods. Also the numerical
testing shows that dynamic allocation is much more efficient
than static allocation.

I. INTRODUCTION
ISCRETE-EVENT systems (DES) simulation is a popular
tool for analyzing systems and evaluating decision

problems, since real situations rarely satisfy the assumptions
of analytical models. While simulation has many advantages
for modeling complex systems, efficiency is still a
significant concern when conducting simulation
experiments. To obtain a good statistical estimate for a
design decision, a large number of simulation samples or
replications is usually required for each design alternative. If
the accuracy requirement is high and the total number of
designs in a decision problem is large, then the total
simulation cost can easily become prohibitively high.

Ordinal Optimization has emerged as an efficient

1. This work has been supported in part by NSF under Grants
DMI-9988867, DMI-0002900, DMI-0049062, DMI-0323220, and
IIS-0325074, by NASA Ames Research Center under Grants NAG-2-1565
and NAG-2-1643, by FAA under Grant 00-G-016, by AFOSR under Grant
F496200110161, and by George Mason University Research Foundation.

2. Dr. Chun-Hung Chen is with Department of Systems Engineering &
Operations Research, George Mason University, 4400 University Drive,
MS 4A6, Fairfax, VA 22030, USA (phone: 703-993-3572; email:
cchen9@gmu.edu).

3. Mr. Donghai He is with Department of Systems Engineering &
Operations Research, George Mason University, 4400 University Drive,
MS 4A6 , Fairfax, VA 22030, USA (email: dhe@gmu.edu).

4. Dr. Michael Fu is with the Robert H. Smith School of Business and
Institute for Systems Research, University of Maryland College Park, MD,
20742-1815,USA (email: mfu@rhsmith.umd.edu)

technique for simulation and optimization. The underlying
philosophy is to obtain good estimates through ordinal
comparison while the value of an estimate is still very poor
(Ho et al. 1992). If our goal is to find the good designs rather
than to find an accurate estimate of the best performance
value, which is true in many practical situations, it is ad-
vantageous to use ordinal comparison for selecting a good
design. Further Dai (1996) shows that the convergence rate
for ordinal optimization can be exponential. This idea has
been successfully applied to several problems (e.g., Hsieh et
al. 2001, Patsis et al. 1997).

While ordinal optimization could significantly reduce the
computational cost for DES simulation, it has been shown
that the efficiency can be further dramatically improved by
intelligently controlling the simulation experiments, or by
determining the efficient number of simulation samples
among different designs as simulation proceeds (Chen et al.
1997). Intuitively, to ensure a high probability of correctly
selecting a good design or a high alignment probability in
ordinal optimization, a larger portion of the computing
budget should be allocated to those designs that are critical
in the process of identifying the best design. In other words,
a larger number of simulations must be conducted with those
critical alternatives in order to reduce these critical
estimators' variances. On the other hand, limited
computational effort should be expended on non-critical
designs that have little effect on identifying the good designs
even if they have large variances. Overall simulation
efficiency is improved as less computational effort is spent
on simulating non-critical alternatives and more is spent on
critical alternatives. Ideally, one would like to allocate
simulation samples to designs in a way that maximizes the
probability of selecting the best design within a given
computing budget. Chen et al. (2000) formalize this idea and
develop a new approach called optimal computing budget
allocation (OCBA) algorithm. They demonstrate that the
speedup factor can be another order of magnitude above and
beyond the exponential convergence of ordinal optimization.
In addition, several simulation budget allocation schemes
have been developed for various applications or from
different perspectives (Chick and Inoue 2001, Lee 2003,
Trailovic and Pao 2004). They also show that the efficiency
can be significantly enhanced.

 A Case Study for Optimal Dynamic Simulation
Allocation in Ordinal Optimization1

Chun-Hung Chen2 , Donghai He3, and Michael Fu4

D

In this paper we extensively study the efficiency issue of
simulation budget allocation for ordinal optimization. In
applying the aforementioned simulation budget allocation
methods, one has to determine a good allocation of
simulation replications (budget) using some information and
then perform simulation accordingly. One challenge is that
the objective function we intend to estimate and then
optimize is a critical component in determining the
simulation budget allocation. Unfortunately a good estimate
of the objective function is usually not available until after
the simulation is carried out. Without a good estimate, the
budget allocation may not be good, which has an impact on
the simulation efficiency. There are two possible approaches
for handling this issue. One is to perform some preliminary
simulation to obtain information for determining budget
allocation, and then allocate the remaining simulation
budget at once. We call this the static allocation. On the
other hand, one may allocate only a small portion of the
simulation budget each time and utilize the most updated
simulated information to determine the new budget
allocation iteratively. We refer to the second approach as a
dynamic allocation. Intuitively, a dynamic allocation should
work better than a static allocation.

In this paper we consider a small but general problem. We
present theoretical optimal allocation schemes for both static
and dynamic allocation. We also test some existing budget
allocation methods against the presented theoretically
optimal allocation using three numerical examples. We find
that dynamic allocation is indeed much more efficient than
static allocation. It is interesting to see that OCBA performs
better than the optimal static allocation. However, there is
still room for OCBA to improve its performance, because
we observe that the optimal dynamic allocation performs
much better than OCBA.

The paper is organized as follows: In the next section, we
define the notation and the simulation run allocation
problem for ordinal optimization. Section 3 gives a solution
to a theoretically optimal allocation problem. Numerical
experiments are given in Section 4. Section 5 concludes the
paper.

II. EFFICIENT SIMULATION ALLOCATION FOR ORDINAL
OPTIMIZATION

Suppose we have a complex discrete-event system. A
general simulation and optimization problem with finite
number of designs can be defined as

i
min µi ≡ Eξ[L(θi, ξ)] (1)

where θi∈Θ the search space is an arbitrary, huge,
structureless but finite set; θi is the system design parameter
vector for design i, i = 1, 2,..., k; µ, the performance criterion
which is the expectation of L, the sample performance, as a
functional of θ, and ξ, a random vector that represents

uncertain factors in the systems. Note that for the complex
systems considered in this paper, L(θ, ξ) is available only in
the form of a complex calculation via simulation. The
system constraints are implicitly involved in the simulation
process, and so are not shown in (1). In simulation approach,
multiple simulation samples/replications are taken and then
E[L(θi, ξ)] is estimated by the sample mean performance
measure:

∑
=

iN

j
iji

i
L

N 1

),(1 ξθ ,

where ξij represents the j-th sample of ξ and Ni represents the
number of simulation samples for design i. For notational
simplicity, define

Xij ≡ L(θi, ξij)
which is the j-th sample of the performance measure from
design i. In this paper, we assume that the simulation output
is independent from replication to replication. The sampling
across designs is also independent. Also we assume Xij is
normally distributed. The normality assumption is usually
not a problem, because typical simulation output is obtained
from an average performance or batch mean. Our goal is to
select a design associated with the smallest mean
performance measure among k alternative designs. Denote
by
 iX : the sample average of the simulation output for

design i; iX = ∑
=

iN

jiN 1

1 Xij,

 2
iS : the sample variance of the simulation output for

design i,
 2

iσ : the variance for design i, i.e., 2
iσ = Var(Xij). In

practice, 2
iσ is unknown beforehand and so is

approximated by sample variance.
 b: the design with the smallest sample mean

performance; b = arg
i

min { iX }.

 δb,i ≡ bX - iX .
With the above notations and assumption,

Xij ~ N(µi, 2
iσ).

As Ni increases, iX becomes a better approximation to µi in
the sense that its corresponding confidence interval becomes
narrower. The ultimate accuracy of this estimate cannot
improve faster than 1/ N . Note that each sample of Xij
requires one simulation run. A large number of required
samples of Xij for all designs may become very time
consuming. On the other hand, Dai (1996) shows that an
alignment probability of ordinal comparison can converge to
1.0 exponentially fast in most cases. Such an alignment
probability is also called the probability of correct selection
or P{CS}. One example of P{CS} is the probability that

design b is actually the best design. With the advantage of
such an exponential convergence, instead of equally
simulating all designs, Chen et al. (2000) further improve
the performance of ordinal optimization by determining the
best numbers of simulation samples for each design. Assume
that the computation cost for each run is roughly the same
across different designs. The computation cost can then be
approximated by N1 + N2 + …+ Nk, the total number of
samples. We wish to choose N1, N2,…, Nk such that P{CS} is
maximized, subject to a limited computing budget T, i.e.,

kNN ,,1

max
L

 P{CS}

s.t. N1 + N2 + ⋅⋅⋅ + Nk = T. (2)
However, solving such an optimal sample allocation
problem is a big challenge because i) there is no closed-form
expression for P{CS} in general; ii) P{CS} is a function of
the means and variances of all designs which are unknown;
and iii) a solution should be found efficiently. Otherwise the
benefit of efficient run allocation will be lost.

III. THEORETICALLY OPTIMAL COMPUTING BUDGET
ALLOCATION - THREE DESIGNS

It is difficult to solve problem (2). However, for smaller
problems with some assumptions, it is possible to find the
optimal solution. In this paper, first we limit our scope
within problems having only three designs competing for
simulation budget allocation. Second, we assume we have
perfect information until the point of determining simulation
allocation. Namely, we assume we know the means,
variances, and all the samples we have obtained up to the
point.

We consider two possible approaches of allocating
computing budget to designs: static vs. dynamic. In the static
approach, we solve problem (2) and determine its optimal
solution N* ≡ [N1*, N2*, ..., Nk*]. Then we perform Ni*
simulation samples for design i for all i. For the dynamic
approach, instead of allocating all of the T simulation
samples at the beginning, we dynamically allocate only a
small number of simulation samples at each iteration. In the
dynamic approach, the computing budget allocation is
determined iteratively using the most updated simulation
information. Details of these two approaches are presented
in the following subsections.

A. Theoretically Optimal Static Allocation (TOSA)
Procedure
Note that P{CS} is a function of means, variances, and

(N1, N2,…, Nk). When the means and variances for all
designs are known, P{CS} can be calculated (or estimated
through Monte Carlo simulation) if the values of (N1, N2,…,
Nk) are given. Since the total computing budget, T,
considered in this paper is not big, we can evaluate P{CS}
for all possible combinations of (N1, N2,…, Nk) with a
constraint that N1 + N2 +…+ Nk = T. Then the maximum

P{CS} and the corresponding (N1, N2,…, Nk) can be
determined. For example, the three designs in the second
example given in Section 4 are:
 X1j ~ N(0, 02),
 X2j ~ N(0.4, 1.52), and
 X3j ~ N(0.4, 32).
Suppose that the total computing budget T = N1 + N2 + N3 =
120. In this case, design 1 is the best design, and
P{CS} = Pr{ 1X (N1) < 2X (N2) and 1X (N1) < 3X (N3) }
 = Pr{ 2X (N2) > 0 } Pr{ 3X (N3) > 0 }

= Φ(

2

5.1
4.0

N

) Φ(

3

0.3
4.0

N

)

where Φ(⋅) is the cumulative distribution function of the
standard normal random variable. Since the variance of
design 1 is zero, we know that in the theoretically optimal
allocation, we should not allocate any sample to design 1 as
it will not further reduce its estimation variance. We should
allocate the limited computing budget to Designs 2 and 3
only. Thus we can easily evaluate P{CS} for all 121
combinations with the constraint N2 + N3 = 120 and find the
best allocation. Once the optimal solution (N1*, N2*, N3*) is
found, the TOSA allocates all the computing budget at a
time and performs Ni* simulation samples for each design i
accordingly.

B. Theoretically Optimal Dynamic Allocation (TODA)
Procedure
In the dynamic approach, we allocate only one additional

simulation sample at each iteration. By utilizing the sampled
information, we determine the new allocation dynamically.
Again, we assume we have perfect information of knowing
the means, variances, and all the samples we have taken for
all designs up to the decision point. For notational simplicity,
we assume µ1 < µ2 < µ3 in the following discussion. Suppose
we have conducted N1, N2, N3 simulation samples for the
three designs and obtained the sample means: 1X , 2X , and

3X . The decision problem is which design we should
choose to have one more simulation sample such that the
P{CS} can be maximized given the information we have.
Denote a as the decision variable that gives the index of
design which we will simulate at the next iteration and ya as
the new sample obtained after we perform this additional
simulation on design a. Thus

a* = arg
a

max P{CS | 1X , 2X , 3X , a}

where a ∈ {1, 2, 3} (3)
When a = 1,
 P1 ≡ P{CS | 1X , 2X , 3X , a=1}

 = P{
11

111

+
+

n
yXn < min(2X , 3X)}

 = 






 −−•
Φ

1

111321 } ,min{1)+ (
σ

µXnXXn

Similarly, if we decide to simulate design 2, i.e., a = 2, then
 P2 ≡ P{CS | 1X , 2X , 3X , a=2}

 = P{ 1X <
12

222

+
+

n
yXn

∩ 1X < 3X }

 = I(1X < 3X) 






 +
Φ

2

21222 1)+ (-
σ

µXnXn

where I(⋅) is an identity function. When a = 3,
 P3 ≡ P{CS | 1X , 2X , 3X , a=3}

 = P{ 1X <
13

333

+
+

n
yXn

∩ 1X < 2X }

 = I(1X < 2X) 






 +
Φ

3

31333 1)+ (-
σ

µXnXn

Thus, problem (3) is equivalent to
a* = arg

a
max Pa (4)

To solve the optimal decision problem in (4), we need to
consider different cases based on the order of 1X , 2X , and

3X as follows.

Case 1. When 1X is the smallest,

 P1 = 






 −−•
Φ

1

111321 } ,min{1)+ (
σ

µXnXXn

 P2 = 






 +
Φ

2

21222 1)+ (-
σ

µXnXn

 P3 = 






 +
Φ

3

31333 1)+ (-
σ

µXnXn

Case 2. When 3X < 1X < 2X ,

 P1 = 






 −−
Φ

1

11131 1)+ (
σ

µXnXn

 P2 = 0

 P3 = 






 +
Φ

3

31333 1)+ (-
σ

µXnXn
.

Case 3. When 2X < 1X < 3X ,

 P1 = 






 −−
Φ

1

11121 1)+ (
σ

µXnXn

 P2 = 






 +
Φ

2

21222 1)+ (-
σ

µXnXn

 P3 = 0
Case 4. When 1X is the largest,

 P1 = 






 −−•
Φ

1

111321 } ,min{1)+ (
σ

µXnXXn

 P2 = 0; P3 = 0.

Note that Φ is a monotonically increasing function and
Φ(-∞) = 0. To maximize Pa, it is equivalent to maximize Qa,
which is defined as the parameter value in the Φ function as
follows:
Case 1. When 1X is the smallest,

 Q1 =
1

111321 } ,min{1)+ (
σ

µ−−• XnXXn

 Q2 =
2

21222 1)+ (-
σ

µ+XnXn

 Q3 =
3

31333 1)+ (-
σ

µ+XnXn

Case 2. When 3X < 1X < 2X ,

 Q1 =
1

11131 1)+ (
σ

µ−− XnXn

 Q2 = (-∞)

 Q3 =
3

31333 1)+ (-
σ

µ+XnXn
.

Case 3. When 2X < 1X < 3X ,

 Q1 =
1

11121 1)+ (
σ

µ−− XnXn

 Q2 =
2

21222 1)+ (-
σ

µ+XnXn

 Q3 = (-∞)
Case 4. When 1X is the largest,

 Q1 =
1

111321 } ,min{1)+ (
σ

µ−−• XnXXn

 Q2 = (-∞); Q3 = (-∞).
Now the action a can be easily determined by maximizing Qi.
Namely,

a* = arg
a

max Qa (5)

In summary, at each iteration, we calculate the most
updated sample means, 1X , 2X , and 3X . Then Qa is
calculated and the action a can be determined. We allocate
the additional computing budget to design a. After design a
is simulated for one more sample, aX is updated, and the
whole procedure is repeated until the computing budget T is
exhausted.

IV. NUMERICAL TESTING AND EVALUATION ON PRACTICAL
ALLOCATION PROCEDURES

In this section, we test and compare the theoretically
optimal allocation schemes in Section 3 with some practical
allocation procedures using three numerical examples.

A. Practical Allocation Procedures
In practice, the means and variances of all designs are

unknown prior to performing simulations. Instead of using
the real means and variances, practical allocation procedures
apply sample means and sample variances obtained from
simulation samples to determine additional simulation
allocation. Three representative allocation procedures in
ordinal optimization are considered in this paper. They are
briefly summarized as follows.

1) Equal Allocation (Equal)
This has been widely applied. The simulation budget is

equally allocated to all designs.
2) Proportional To Variance (PTV)

This is based on well-known two-stage Rinott procedure
(Rinott 1978). The idea is to allocate computing budget in a
way that Ni is proportional to the estimated sample variances,

2
iS .

3) OCBA by Chen el al. (2000)
Under a Bayesian model, OCBA approximates P{CS}

using the Bonferroni inequality and offers an asymptotic
solution to this approximation. While the run allocation
given by OCBA is not an optimal allocation when the
simulation budget is finite, the numerical testing
demonstrates that OCBA is a very efficient approach and
can dramatically reduce simulation time. In particular,
OCBA allocates simulation runs according to:

•
j

i

N
N

=
2

,

,











jbj

ibi

δσ
δσ

, i, j ∈ {1, 2, ..., k}, and i ≠ j ≠ b,

 (6)

• Nb = ∑
≠=

k

bii i

i
b

N

,1
2

2

σ
σ . (7)

Note that in OCBA, the allocation is a function of the
differences in sample means and the variances, which are
approximated by sample variances.

B. Numerical Testing
We also consider both dynamic and two-stage allocation

for both PTV and OCBA. Initially, n0 simulation runs for
each of k designs are performed to get some information
such as sample mean and variance of each design during the
first stage. Then different allocation procedures are applied
to determine how to allocate the remaining simulation
budget. In the two-stage allocation, all the remaining budget
is allocated at once after the first-stage simulation. They are
called PTV-2 and OCBA-2. On the other hand, for dynamic
allocation, only an incremental computing budget, ∆, is
allocated at each iteration after the first stage. As simulation
proceeds, the sample means and sample variances of all
designs are computed from the data already collected up to
that stage. The simulation budget allocation is determined
dynamically using the most updated sampling information.
The procedure is continued until the total budget T is
exhausted. We denote them as PTV-D and OCBA-D. The

algorithm for PTV-D and OCBA-D is summarized as
follows.

A Sequential Algorithm for OCBA or PTV
 Step 0. Perform n0 simulation replications for all designs;

l←0; l
k

ll NNN === L21 = n0.

 Step 1. If ∑
=

k

i

l
iN

1

≥ T, stop.

 Step 2. Increase the computing budget (i.e., number of
additional simulations) by ∆ and compute the
new budget allocation, 11

2
1

1 ,,, +++ l
k

ll NNN L ,
using (6) and (7) for OCBA.

 Step 3. Perform additional max(0, 1+l
iN - l

iN)
simulations for design i, i = 1, ..., k.

 l← l + 1. Go to Step 1.
In the above algorithm, l is the iteration number. As

simulation evolves, design b, which is the design with the
smallest sample mean, may change from iteration to iteration,
although it will converge to the optimal design as the l goes
to infinity. When b changes, Theorem 1 is directly applied in
step 2. However, the older design b may not be simulated at
all in this iteration in step 3 due to extra allocation to this
design in earlier iterations.

The P{CS} for each procedure is estimated by counting
the number of times the procedure successfully finds the true
best design out of 1,000,000 independent applications, and
then dividing this number by 1,000,000. The choice of
1,000,000 macro replications leads to a standard error for the
P{CS} estimate of under 0.001 or 0.1%. The P{CS}
estimate for each procedure will serve as a measurement of
its effectiveness for comparison purposes. In all of the
examples, there are three design alternatives, the total
computing budget is T = N1 + N2 + N3 = 120, and we have set
n0 = 10 and ∆ = 5.

1) Example 1.
This is a special case where the best design has zero variance
and the two inferior designs have the same performance. The
three design alternatives are:
 X1j ~ N(0, 02),
 X2j ~ N(0.4, 32), and
 X3j ~ N(0.4, 32).
Practically speaking, this case implies that design 1 has no
estimation uncertainty, while design 2 and design 3 are
extremely close but with uncertainty. It is obvious that for
TOSA, we should not allocate any simulation budget to
design 1 , but should equally divide the budget to designs 2
and 3. Thus, N1 = 0 and N2 = N3 = 60.

Table I shows the test results using different allocation
procedures. We see that TODA performs much better than
TOSA. This shows the benefit of dynamic allocation. We
also see that OCBA performs better than Equal and PTV.
However, it is interesting to observe that OCBA-D

outperforms TOSA by a very big margin. This once again
demonstrates the benefit of dynamic allocation.

2) Example 2.
This is the same as Example 1, except the variances of the
two inferior designs differ:
 X1j ~ N(0, 02),
 X2j ~ N(0.4, 1.52), and
 X3j ~ N(0.4, 32).
In this case,
P{CS} = Pr{ 1X (N1) < 2X (N2) and 1X (N1) < 3X (N3) }
 = Pr{ 2X (N2) > 0 } Pr{ 3X (N3) > 0 }

 = Φ(

2

5.1
4.0

N

) Φ(

3

0.3
4.0

N

)

Since the variance of design 1 is zero, we should allocate the
limited computing budget to Designs 2 and 3 only. Thus we
can easily evaluate P{CS} for all 121 combinations with the
constraint N2 + N3 = 120 to find the optimal static allocation.
Table II shows the test results using different allocation
procedures.

3) Example 3.
This is a more general case where all three designs have
non-zero variances and different means:
 X1j ~ N(0, 32),
 X2j ~ N(0.4, 1.52), and
 X3j ~ N(1.5, 32).
In this case, we evaluate P{CS} using Monte Carlo
simulation for all combinations. Table III shows the test
results using different allocation procedures.

V. CONCLUSION
This paper examines the efficiency issue of simulation

budget allocation for ordinal optimization, which has
emerged as an efficient technique for simulation and

optimization. By intelligently allocating simulation samples
across designs, we can further dramatically improve the
efficiency of ordinal optimization. Under some assumptions,
we develop theoretically optimal simulation budget
allocation schemes for both version of static and dynamic
sampling. We show that dynamic simulation allocation is
more efficient than static allocation notwithstanding that in
general problems a theoretically optimal allocation may not
be at hand. Instead some work should be done on the
dynamic OCBA algorithm to reduce the simulation time.

REFERENCES
[1] Chen, H. C., C. H. Chen, L. Dai, E. Yücesan, "New Development of

Optimal Computing Budget Allocation for Discrete Event
Simulation," Proceedings of the 1997 Winter Simulation Conference,
334-341, 1997.

[2] Chen, C. H., J. Lin, E. Yücesan, and S. E. Chick, "Simulation Budget
Allocation for Further Enhancing the Efficiency of Ordinal
Optimization," Journal of Discrete Event Dynamic Systems: Theory
and Applications, Vol. 10, pp. 251-270, 2000.

[3] Chen, C. H., K. Donohue, E. Yücesan, and J. Lin, "Optimal
Computing Budget Allocation for Monte Carlo Simulation with
Application to Product Design," Journal of Simulation Practice and
Theory, Vol. 11, No. 1, pp. 57-74, March 2003.

[4] Chick, S.E. and K. Inoue, "New Two-Stage and Sequential Procedures
for Selecting the Best Simulated System," Operations Research, Vol.
49, pp. 732-743, 2001.

[5] Dai, L., "Convergence Properties of Ordinal Comparison in the
Simulation of Discrete Event Dynamic Systems," Journal of
Optimization Theory and Applications, Vol. 91, No.2, pp. 363-388,
1996.

[6] Ho, Y. C., R. S. Sreenivas, and P. Vakili, "Ordinal Optimization of
DEDS," Journal of Discrete Event Dynamic Systems, 2, #2, 61-88,
1992.

[7] Hsieh, B. W., C. H. Chen, and S. C. Chang, "Scheduling
Semiconductor Wafer Fabrication by Using Ordinal
Optimization-Based Simulation," IEEE Transactions on Robotics and
Automation, Vol. 17, No. 5, pp. 599-608, October 2001.

[8] Lee, L. H., " A simulation Study on Sampling and Selecting under
Fixed Computing Budget," Proceedings of 2003 Winter Simulation
Conference, forthcoming, December 2003.

[9] Patsis, N. T., C. H. Chen, and M. E. Larson, "SIMD Parallel Discrete
Event Dynamic System Simulation," IEEE Transactions on Control
Systems Technology, Vol. 5, No. 3, pp. 30-41, January, 1997.

[10] Rinott, Y., "On Two-stage Selection Procedures and Related
Probability Inequalities," Communications in Statistics A7, 799-811,
1978.

[11] Trailovic, L. and L. Y. Pao, "Computing Budget Allocation for
Efficient Ranking and Selection of Variances with Application to
Target Tracking Algorithms," to appear in IEEE Transactions on
Automatic Control, 2004.

TABLE I
PERFORMANCE COMPARISON OF DIFFERENT SIMULATION RUN ALLOCATION

PROCEDURES IN EXAMPLE 1. THE TOTAL COMPUTING BUDGET IS 120
Procedures TOSA TODA Equal PTV-2 PTV-D OCBA-2 OCBA-D

P{CS} 0.720 0.964 0.640 0.691 0.711 0.764 0.826

TABLE III
PERFORMANCE COMPARISON OF DIFFERENT SIMULATION RUN ALLOCATION

PROCEDURES IN EXAMPLE 3. THE TOTAL COMPUTING BUDGET IS 120
Procedures TOSA TODA Equal PTV-2 PTV-D OCBA-2 OCBA-D

P{CS} 0.800 0.962 0.772 0.750 0.787 0.778 0.808

TABLE II
PERFORMANCE COMPARISON OF DIFFERENT SIMULATION RUN ALLOCATION

PROCEDURES IN EXAMPLE 2. THE TOTAL COMPUTING BUDGET IS 120
Procedures TOSA TODA Equal PTV-2 PTV-D OCBA-2 OCBA-D

P{CS} 0.843 0.982 0.764 0.791 0.799 0.852 0.899

