
 
 

 

Abstract— Ordinal Optimization has emerged as an efficient 
technique for simulation and optimization. Exponential 
convergence rates can be achieved in many cases. A good 
allocation of simulation samples across designs can further 
dramatically improve the efficiency of ordinal optimization by 
orders of magnitude. However, the allocation problem itself is 
a big challenge. Most existing methods offer approximations. 
Assuming the availability of perfect information, we 
investigate theoretically optimal allocation schemes for some 
special cases. We compare our theoretically optimal solutions 
with existing approximation methods using a series of 
numerical examples. While perfect information is not available 
in real life, such an optimal solution provides an upper bound 
for the simulation efficiency we can achieve. The results 
indicate that the simulation efficiency can still be further 
improved beyond the existing methods. Also the numerical 
testing shows that dynamic allocation is much more efficient 
than static allocation. 

I.  INTRODUCTION 
ISCRETE-EVENT systems (DES) simulation is a popular 
tool for analyzing systems and evaluating decision 

problems, since real situations rarely satisfy the assumptions 
of analytical models. While simulation has many advantages 
for modeling complex systems, efficiency is still a 
significant concern when conducting simulation 
experiments. To obtain a good statistical estimate for a 
design decision, a large number of simulation samples or 
replications is usually required for each design alternative. If 
the accuracy requirement is high and the total number of 
designs in a decision problem is large, then the total 
simulation cost can easily become prohibitively high. 

Ordinal Optimization has emerged as an efficient 
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technique for simulation and optimization. The underlying 
philosophy is to obtain good estimates through ordinal 
comparison while the value of an estimate is still very poor 
(Ho et al. 1992). If our goal is to find the good designs rather 
than to find an accurate estimate of the best performance 
value, which is true in many practical situations, it is ad-
vantageous to use ordinal comparison for selecting a good 
design. Further Dai (1996) shows that the convergence rate 
for ordinal optimization can be exponential. This idea has 
been successfully applied to several problems (e.g., Hsieh et 
al. 2001, Patsis et al. 1997). 

While ordinal optimization could significantly reduce the 
computational cost for DES simulation, it has been shown 
that the efficiency can be further dramatically improved by 
intelligently controlling the simulation experiments, or by 
determining the efficient number of simulation samples 
among different designs as simulation proceeds (Chen et al. 
1997). Intuitively, to ensure a high probability of correctly 
selecting a good design or a high alignment probability in 
ordinal optimization, a larger portion of the computing 
budget should be allocated to those designs that are critical 
in the process of identifying the best design.  In other words, 
a larger number of simulations must be conducted with those 
critical alternatives in order to reduce these critical 
estimators' variances. On the other hand, limited 
computational effort should be expended on non-critical 
designs that have little effect on identifying the good designs 
even if they have large variances. Overall simulation 
efficiency is improved as less computational effort is spent 
on simulating non-critical alternatives and more is spent on 
critical alternatives. Ideally, one would like to allocate 
simulation samples to designs in a way that maximizes the 
probability of selecting the best design within a given 
computing budget. Chen et al. (2000) formalize this idea and 
develop a new approach called optimal computing budget 
allocation (OCBA) algorithm. They demonstrate that the 
speedup factor can be another order of magnitude above and 
beyond the exponential convergence of ordinal optimization. 
In addition, several simulation budget allocation schemes 
have been developed for various applications or from 
different perspectives (Chick and Inoue 2001, Lee 2003, 
Trailovic and Pao 2004). They also show that the efficiency 
can be significantly enhanced. 
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In this paper we extensively study the efficiency issue of 
simulation budget allocation for ordinal optimization. In 
applying the aforementioned simulation budget allocation 
methods, one has to determine a good allocation of 
simulation replications (budget) using some information and 
then perform simulation accordingly. One challenge is that 
the objective function we intend to estimate and then 
optimize is a critical component in determining the 
simulation budget allocation. Unfortunately a good estimate 
of the objective function is usually not available until after 
the simulation is carried out. Without a good estimate, the 
budget allocation may not be good, which has an impact on 
the simulation efficiency. There are two possible approaches 
for handling this issue. One is to perform some preliminary 
simulation to obtain information for determining budget 
allocation, and then allocate the remaining simulation 
budget at once. We call this the static allocation. On the 
other hand, one may allocate only a small portion of the 
simulation budget each time and utilize the most updated 
simulated information to determine the new budget 
allocation iteratively. We refer to the second approach as a 
dynamic allocation. Intuitively, a dynamic allocation should 
work better than a static allocation.  

In this paper we consider a small but general problem. We 
present theoretical optimal allocation schemes for both static 
and dynamic allocation. We also test some existing budget 
allocation methods against the presented theoretically 
optimal allocation using three numerical examples. We find 
that dynamic allocation is indeed much more efficient than 
static allocation. It is interesting to see that OCBA performs 
better than the optimal static allocation. However, there is 
still room for OCBA to improve its performance, because 
we observe that the optimal dynamic allocation performs 
much better than OCBA. 

The paper is organized as follows: In the next section, we 
define the notation and the simulation run allocation 
problem for ordinal optimization. Section 3 gives a solution 
to a theoretically optimal allocation problem. Numerical 
experiments are given in Section 4.  Section 5 concludes the 
paper. 

II. EFFICIENT SIMULATION ALLOCATION FOR ORDINAL 
OPTIMIZATION 

Suppose we have a complex discrete-event system. A 
general simulation and optimization problem with finite 
number of designs can be defined as 

i
min µi ≡ Eξ[L(θi, ξ)]                          (1) 

where θi∈Θ the search space is an arbitrary, huge, 
structureless but finite set; θi is the system design parameter 
vector for design i, i = 1, 2,..., k; µ, the performance criterion 
which is the expectation of L, the sample performance, as a 
functional of θ, and ξ, a random vector that represents 

uncertain factors in the systems. Note that for the complex 
systems considered in this paper, L(θ, ξ) is available only in 
the form of a complex calculation via simulation. The 
system constraints are implicitly involved in the simulation 
process, and so are not shown in (1). In simulation approach, 
multiple simulation samples/replications are taken and then 
E[L(θi, ξ)] is estimated by the sample mean performance 
measure: 

∑
=

iN

j
iji

i
L

N 1

),(1 ξθ , 

where ξij represents the j-th sample of ξ and Ni represents the 
number of simulation samples for design i. For notational 
simplicity, define 

Xij ≡ L(θi, ξij) 
which is the j-th sample of the performance measure from 
design i. In this paper, we assume that the simulation output 
is independent from replication to replication. The sampling 
across designs is also independent. Also we assume Xij is 
normally distributed. The normality assumption is usually 
not a problem, because typical simulation output is obtained 
from an average performance or batch mean. Our goal is to 
select a design associated with the smallest mean 
performance measure among k alternative designs. Denote 
by 
 iX : the sample average of the simulation output for 

design i; iX  = ∑
=

iN

jiN 1

1 Xij, 

 2
iS : the sample variance of the simulation output for 

design i, 
   2

iσ : the variance for design i, i.e., 2
iσ  = Var(Xij). In 

practice, 2
iσ  is unknown beforehand and so is 

approximated by sample variance. 
 b: the design with the smallest sample mean 

performance; b = arg 
i

min { iX }. 

 δb,i  ≡ bX  - iX . 
With the above notations and assumption, 

Xij ~ N(µi,  2
iσ ). 

As Ni increases, iX  becomes a better approximation to µi in 
the sense that its corresponding confidence interval becomes 
narrower. The ultimate accuracy of this estimate cannot 
improve faster than 1/ N . Note that each sample of Xij 
requires one simulation run. A large number of required 
samples of Xij for all designs may become very time 
consuming. On the other hand, Dai (1996) shows that an 
alignment probability of ordinal comparison can converge to 
1.0 exponentially fast in most cases. Such an alignment 
probability is also called the probability of correct selection 
or P{CS}. One example of P{CS} is the probability that 



 
 

 

design b is actually the best design. With the advantage of 
such an exponential convergence, instead of equally 
simulating all designs, Chen et al. (2000) further improve 
the performance of ordinal optimization by determining the 
best numbers of simulation samples for each design. Assume 
that the computation cost for each run is roughly the same 
across different designs. The computation cost can then be 
approximated by N1 + N2 + …+ Nk, the total number of 
samples. We wish to choose N1, N2,…, Nk such that P{CS} is 
maximized, subject to a limited computing budget T, i.e., 

kNN ,,1

max
L

 P{CS} 

s.t. N1 + N2 + ⋅⋅⋅ + Nk = T.                (2) 
However, solving such an optimal sample allocation 
problem is a big challenge because i) there is no closed-form 
expression for P{CS} in general; ii) P{CS} is a function of 
the means and variances of all designs which are unknown; 
and iii) a solution should be found efficiently. Otherwise the 
benefit of efficient run allocation will be lost.  

III. THEORETICALLY OPTIMAL COMPUTING BUDGET 
ALLOCATION - THREE DESIGNS 

It is difficult to solve problem (2). However, for smaller 
problems with some assumptions, it is possible to find the 
optimal solution. In this paper, first we limit our scope 
within problems having only three designs competing for 
simulation budget allocation. Second, we assume we have 
perfect information until the point of determining simulation 
allocation. Namely, we assume we know the means, 
variances, and all the samples we have obtained up to the 
point. 

We consider two possible approaches of allocating 
computing budget to designs: static vs. dynamic. In the static 
approach, we solve problem (2) and determine its optimal 
solution N* ≡ [ N1*, N2*, ..., Nk*]. Then we perform Ni* 
simulation samples for design i for all i. For the dynamic 
approach, instead of allocating all of the T simulation 
samples at the beginning, we dynamically allocate only a 
small number of simulation samples at each iteration. In the 
dynamic approach, the computing budget allocation is 
determined iteratively using the most updated simulation 
information. Details of these two approaches are presented 
in the following subsections. 

A. Theoretically Optimal Static Allocation (TOSA) 
Procedure 
Note that P{CS} is a function of means, variances, and 

(N1, N2,…, Nk). When the means and variances for all 
designs are known, P{CS} can be calculated (or estimated 
through Monte Carlo simulation) if the values of (N1, N2,…, 
Nk) are given. Since the total computing budget, T, 
considered in this paper is not big, we can evaluate P{CS} 
for all possible combinations of (N1, N2,…, Nk) with a 
constraint that N1 + N2 +…+ Nk = T.  Then the maximum 

P{CS} and the corresponding (N1, N2,…, Nk) can be 
determined.  For example, the three designs in the second 
example given in Section 4 are: 
 X1j ~ N(0,  02), 
 X2j ~ N(0.4,  1.52), and  
 X3j ~ N(0.4,  32). 
Suppose that the total computing budget T = N1 + N2 + N3 = 
120. In this case, design 1 is the best design, and 
P{CS} = Pr{ 1X (N1) < 2X (N2)  and 1X (N1) < 3X (N3) } 
   = Pr{ 2X (N2) > 0 } Pr{ 3X (N3) > 0 } 

= Φ(

2

5.1
4.0

N

) Φ(

3

0.3
4.0

N

)  

where Φ(⋅) is the cumulative distribution function of the 
standard normal random variable. Since the variance of 
design 1 is zero, we know that in the theoretically optimal 
allocation, we should not allocate any sample to design 1 as 
it will not further reduce its estimation variance. We should 
allocate the limited computing budget to Designs 2 and 3 
only. Thus we can easily evaluate P{CS} for all 121 
combinations with the constraint N2 + N3 = 120 and find the 
best allocation. Once the optimal solution (N1*, N2*, N3*) is 
found, the TOSA allocates all the computing budget at a 
time and performs Ni* simulation samples for each design i 
accordingly.  

B. Theoretically Optimal Dynamic Allocation (TODA) 
Procedure 
In the dynamic approach, we allocate only one additional 

simulation sample at each iteration. By utilizing the sampled 
information, we determine the new allocation dynamically. 
Again, we assume we have perfect information of knowing 
the means, variances, and all the samples we have taken for 
all designs up to the decision point. For notational simplicity, 
we assume µ1 < µ2 < µ3 in the following discussion. Suppose 
we have conducted N1, N2, N3 simulation samples for the 
three designs and obtained the sample means: 1X , 2X , and 

3X . The decision problem is which design we should 
choose to have one more simulation sample such that the 
P{CS} can be maximized given the information we have. 
Denote a as the decision variable that gives the index of 
design which we will simulate at the next iteration and ya as 
the new sample obtained after we perform this additional 
simulation on design a. Thus  

a* = arg 
a

max  P{CS | 1X , 2X , 3X , a} 

where a ∈ {1, 2, 3}                                           (3) 
When a = 1,  
 P1 ≡ P{CS | 1X , 2X , 3X , a=1} 

  = P{
11

111

+
+

n
yXn < min( 2X , 3X )} 
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
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Φ

1

111321 } ,min{1)+ (
σ

µXnXXn
 

Similarly, if we decide to simulate design 2, i.e., a = 2, then 
 P2 ≡ P{CS | 1X , 2X , 3X , a=2} 

 = P{ 1X <
12

222

+
+

n
yXn

∩ 1X < 3X } 

 = I( 1X < 3X ) 






 +
Φ

2

21222 1)+ (-
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µXnXn
 

where I(⋅) is an identity function. When a = 3, 
 P3 ≡ P{CS | 1X , 2X , 3X , a=3} 

 = P{ 1X <
13

333

+
+

n
yXn

∩ 1X < 2X } 

 = I( 1X < 2X ) 






 +
Φ

3

31333 1)+ (-
σ

µXnXn
 

Thus, problem (3) is equivalent to 
a* = arg 

a
max   Pa                                                       (4) 

To solve the optimal decision problem in (4), we need to 
consider different cases based on the order of 1X , 2X , and 

3X  as follows. 

Case 1. When 1X  is the smallest, 

 P1 = 




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111321 } ,min{1)+ (
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µXnXXn
 

 P2 = 






 +
Φ

2

21222 1)+ (-
σ

µXnXn
 

 P3 = 






 +
Φ

3

31333 1)+ (-
σ

µXnXn
 

Case 2. When 3X  < 1X  < 2X , 

 P1 = 






 −−
Φ

1

11131 1)+ (
σ

µXnXn
 

 P2 = 0 

 P3 = 






 +
Φ

3

31333 1)+ (-
σ

µXnXn
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Case 3. When 2X  < 1X  < 3X , 

 P1 = 




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11121 1)+ (
σ

µXnXn
 

 P2 = 






 +
Φ

2

21222 1)+ (-
σ

µXnXn
 

 P3 = 0 
Case 4. When 1X  is the largest,  

 P1 = 






 −−•
Φ

1

111321 } ,min{1)+ (
σ

µXnXXn
 

 P2 = 0; P3 = 0. 

Note that Φ is a monotonically increasing function and 
Φ(-∞) = 0. To maximize Pa, it is equivalent to maximize Qa, 
which is defined as the parameter value in the Φ function as 
follows: 
Case 1. When 1X  is the smallest, 

 Q1 = 
1

111321 } ,min{1)+ (
σ

µ−−• XnXXn
 

 Q2 = 
2

21222 1)+ (-
σ

µ+XnXn
 

 Q3 = 
3

31333 1)+ (-
σ

µ+XnXn
 

Case 2. When 3X  < 1X  < 2X , 

 Q1 = 
1

11131 1)+ (
σ

µ−− XnXn
 

 Q2 = (-∞) 

 Q3 = 
3

31333 1)+ (-
σ

µ+XnXn
. 

Case 3. When 2X  < 1X  < 3X , 

 Q1 = 
1

11121 1)+ (
σ

µ−− XnXn
 

 Q2 = 
2

21222 1)+ (-
σ

µ+XnXn
 

 Q3 = (-∞) 
Case 4. When 1X  is the largest,  

 Q1 = 
1

111321 } ,min{1)+ (
σ

µ−−• XnXXn
 

 Q2 = (-∞); Q3 = (-∞). 
Now the action a can be easily determined by maximizing Qi. 
Namely, 

a* = arg 
a

max   Qa                                                (5) 

In summary, at each iteration, we calculate the most 
updated sample means, 1X , 2X , and 3X . Then Qa is 
calculated and the action a can be determined. We allocate 
the additional computing budget to design a. After design a 
is simulated for one more sample, aX  is updated, and the 
whole procedure is repeated until the computing budget T is 
exhausted. 

IV. NUMERICAL TESTING AND EVALUATION ON PRACTICAL 
ALLOCATION PROCEDURES 

In this section, we test and compare the theoretically 
optimal allocation schemes in Section 3 with some practical 
allocation procedures using three numerical examples. 

A. Practical Allocation Procedures 
In practice, the means and variances of all designs are 



 
 

 

unknown prior to performing simulations. Instead of using 
the real means and variances, practical allocation procedures 
apply sample means and sample variances obtained from 
simulation samples to determine additional simulation 
allocation. Three representative allocation procedures in 
ordinal optimization are considered in this paper. They are 
briefly summarized as follows. 

1) Equal Allocation (Equal) 
This has been widely applied. The simulation budget is 

equally allocated to all designs. 
2) Proportional To Variance (PTV) 

This is based on well-known two-stage Rinott procedure 
(Rinott 1978). The idea is to allocate computing budget in a 
way that Ni is proportional to the estimated sample variances, 

2
iS . 

3) OCBA by Chen el al. (2000) 
Under a Bayesian model, OCBA approximates P{CS} 

using the Bonferroni inequality and offers an asymptotic 
solution to this approximation. While the run allocation 
given by OCBA is not an optimal allocation when the 
simulation budget is finite, the numerical testing 
demonstrates that OCBA is a very efficient approach and 
can dramatically reduce simulation time. In particular, 
OCBA allocates simulation runs according to: 

• 
j

i

N
N

= 
2

,

,











jbj

ibi

δσ
δσ

, i, j ∈ {1, 2, ..., k}, and i ≠ j ≠ b,

                   (6) 

• Nb  = ∑
≠=

k

bii i

i
b

N

,1
2

2

σ
σ .          (7) 

Note that in OCBA, the allocation is a function of the 
differences in sample means and the variances, which are 
approximated by sample variances. 

B. Numerical Testing 
We also consider both dynamic and two-stage allocation 

for both PTV and OCBA. Initially, n0 simulation runs for 
each of k designs are performed to get some information 
such as sample mean and variance of each design during the 
first stage. Then different allocation procedures are applied 
to determine how to allocate the remaining simulation 
budget. In the two-stage allocation, all the remaining budget 
is allocated at once after the first-stage simulation. They are 
called PTV-2 and OCBA-2. On the other hand, for dynamic 
allocation, only an incremental computing budget, ∆, is 
allocated at each iteration after the first stage. As simulation 
proceeds, the sample means and sample variances of all 
designs are computed from the data already collected up to 
that stage. The simulation budget allocation is determined 
dynamically using the most updated sampling information. 
The procedure is continued until the total budget T is 
exhausted. We denote them as PTV-D and OCBA-D. The 

algorithm for PTV-D and OCBA-D is summarized as 
follows. 
 

A Sequential Algorithm for OCBA or PTV  
 Step 0. Perform n0 simulation replications for all designs; 

l←0; l
k

ll NNN === L21  = n0. 

 Step 1. If ∑
=

k

i

l
iN

1

≥ T, stop.  

 Step 2. Increase the computing budget (i.e., number of 
additional simulations) by ∆ and compute the 
new budget allocation, 11

2
1

1 ,,, +++ l
k

ll NNN L , 
using (6) and (7) for OCBA. 

 Step 3. Perform additional max(0, 1+l
iN - l

iN ) 
simulations for design i, i = 1, ..., k. 

   l← l + 1.  Go to Step 1. 
In the above algorithm, l is the iteration number. As 

simulation evolves, design b, which is the design with the 
smallest sample mean, may change from iteration to iteration, 
although it will converge to the optimal design as the l goes 
to infinity. When b changes, Theorem 1 is directly applied in 
step 2. However, the older design b may not be simulated at 
all in this iteration in step 3 due to extra allocation to this 
design in earlier iterations.  

The P{CS} for each procedure is estimated by counting 
the number of times the procedure successfully finds the true 
best design out of 1,000,000 independent applications, and 
then dividing this number by 1,000,000. The choice of 
1,000,000 macro replications leads to a standard error for the 
P{CS} estimate of under 0.001 or 0.1%. The P{CS} 
estimate for each procedure will serve as a measurement of 
its effectiveness for comparison purposes. In all of the 
examples, there are three design alternatives, the total 
computing budget is T = N1 + N2 + N3 = 120, and we have set 
n0 = 10 and ∆ = 5. 

1) Example 1. 
This is a special case where the best design has zero variance 
and the two inferior designs have the same performance. The 
three design alternatives are: 
 X1j ~ N(0,  02), 
 X2j ~ N(0.4,  32), and  
 X3j ~ N(0.4,  32). 
Practically speaking, this case implies that design 1 has no 
estimation uncertainty, while design 2 and design 3 are 
extremely close but with uncertainty. It is obvious that for 
TOSA, we should not allocate any simulation budget to 
design 1 , but should equally divide the budget to designs 2 
and 3. Thus, N1 = 0 and N2 = N3 = 60. 

Table I shows the test results using different allocation 
procedures. We see that TODA performs much better than 
TOSA. This shows the benefit of dynamic allocation. We 
also see that OCBA performs better than Equal and PTV. 
However, it is interesting to observe that OCBA-D 



 
 

 

outperforms TOSA by a very big margin. This once again 
demonstrates the benefit of dynamic allocation. 

2) Example 2. 
This is the same as Example 1, except the variances of the 
two inferior designs differ:  
 X1j ~ N(0,  02), 
 X2j ~ N(0.4,  1.52), and  
 X3j ~ N(0.4,  32). 
In this case, 
P{CS} = Pr{ 1X (N1) < 2X (N2)  and 1X (N1) < 3X (N3) } 
   = Pr{ 2X (N2) > 0 } Pr{ 3X (N3) > 0 } 

   = Φ(

2

5.1
4.0

N

) Φ(

3

0.3
4.0

N

)  

Since the variance of design 1 is zero, we should allocate the 
limited computing budget to Designs 2 and 3 only. Thus we 
can easily evaluate P{CS} for all 121 combinations with the 
constraint N2 + N3 = 120 to find the optimal static allocation. 
Table II shows the test results using different allocation 
procedures. 

3) Example 3. 
This is a more general case where all three designs have 
non-zero variances and different means: 
  X1j ~ N(0,  32), 
 X2j ~ N(0.4,  1.52), and  
 X3j ~ N(1.5,  32). 
In this case, we evaluate P{CS} using Monte Carlo 
simulation for all combinations. Table III shows the test 
results using different allocation procedures. 

V. CONCLUSION 
This paper examines the efficiency issue of simulation 

budget allocation for ordinal optimization, which has 
emerged as an efficient technique for simulation and 

optimization. By intelligently allocating simulation samples 
across designs, we can further dramatically improve the 
efficiency of ordinal optimization. Under some assumptions, 
we develop theoretically optimal simulation budget 
allocation schemes for both version of static and dynamic 
sampling. We show that dynamic simulation allocation is 
more efficient than static allocation notwithstanding that in 
general problems a theoretically optimal allocation may not 
be at hand. Instead some work should be done on the 
dynamic OCBA algorithm to reduce the simulation time. 
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TABLE  I  
PERFORMANCE COMPARISON OF DIFFERENT SIMULATION RUN ALLOCATION

PROCEDURES IN EXAMPLE 1. THE TOTAL COMPUTING BUDGET IS 120 
Procedures TOSA TODA Equal PTV-2 PTV-D OCBA-2 OCBA-D

P{CS} 0.720 0.964 0.640 0.691 0.711 0.764 0.826 

 

TABLE III  
PERFORMANCE COMPARISON OF DIFFERENT SIMULATION RUN ALLOCATION

PROCEDURES IN EXAMPLE 3. THE TOTAL COMPUTING BUDGET IS 120 
Procedures TOSA TODA Equal PTV-2 PTV-D OCBA-2 OCBA-D

P{CS} 0.800 0.962 0.772 0.750 0.787 0.778 0.808

TABLE  II 
PERFORMANCE COMPARISON OF DIFFERENT SIMULATION RUN ALLOCATION

PROCEDURES IN EXAMPLE 2. THE TOTAL COMPUTING BUDGET IS 120 
Procedures TOSA TODA Equal PTV-2 PTV-D OCBA-2 OCBA-D

P{CS} 0.843 0.982 0.764 0.791 0.799 0.852 0.899 


