The Standard Atmosphere

SYST 460/560
Intro to Air Transportation System Engineering
Instructor: Lance Sherry (Ph.D.)

P, T, D, a
Motivation

• Aerodynamic and propulsive forces acting on aircraft depend on:
 – Local pressure (P)
 – Local temperature (T)
 – Local density (D)
 – Sonic velocity (a)

• How do P, T, D, a change as a function of altitude
Learning Objectives

Knowledge
• Hydrostatic equation
• Equation of state (for air as a perfect gas)
• Lapse Rate Equation
• Troposphere
• Stratosphere
• Sonic Velocity
• Standard Atmosphere

Skills
• Derive equations for (T, P, D, a) from basic equations for Troposphere and Stratosphere
• Calculate Ratios for Standard Atmosphere
• Calculate T, P, D, a for Standard Atmosphere
Composition of Atmosphere

• Air is treated as a perfect dry gas
 – 78% Nitrogen
 – 22% Oxygen
 – traces of other gases like Hydrogen, Carbon dioxide, ...
Properties of Atmosphere

• Density = $f(\text{Altitude})$
 – Density decreases as altitude increases

• Pressure = $f(\text{Altitude})$
 – Pressure decreases as altitude increases

• Temperature = $f(\text{Altitude})$
 – Temperature decreases as altitude increases
 – drops 1 deg C for every 1000 ft increase in altitude
Troposphere/Stratosphere

Altitude = Height above ground

36,089 feet

Density so low, no change in T

Stratosphere (turbulent)

Troposphere

Density enough, so change in T
Standard Atmosphere

• Standard Atmosphere defines values for (P, T, D, a) as a function of altitude

• Assumptions:
 – (1) atmosphere is static,
 – (2) rotates with the Earth

• Subsonic aircraft: surface to 45,000ft
Basic Equation #1 – Hydrostatic Equation

• The difference in pressure \((dp)\) between two altitudes \((dH)\), is equal to the weight (mass * gravitational constant).

• Relates pressure \((p)\) and density \((\rho)\) to height

\[
dp = - \rho g \, dH
\]

– \(p\) = barometric pressure \((lb/ft^2)\)
– \(\rho\) = density \((sl/ft^3)\)
– \(g\) = gravitational constant \((ft/sec^2)\)
– \(H\) = Height in Standard Atmosphere \((ft)\)
Basic Equation #2 - Equation of State for Air (as a Perfect Gas)

• $P = \rho \times R \times T$

• Relates the pressure (p) and density (ρ) to the Temperature (T)
 – $R = \text{gas constant for air} = 287.053 \text{ joules/kg-deg K} = 1716.551 \text{ ft-lb/sl-degR}$
 – $P_0 = \text{standard sea-level pressure} 101325 \text{ n/m}^2 = 2116.22 \text{ lb/ft}^2 = 29.9213 \text{ in Hg at } T_0 = 518.67 \text{ deg R}$
 – $P_0 = \text{standard sea-level density} 1,22500 \text{ kg/m}^3 = 0.00237691 \text{ sl/ft}^3$
Basic Equation #3 – Temperature vs Altitude

• **Troposphere** (surface (-1000 ft) to \(H_T = 36,089 \) ft)

 \[- T_T = T_0 + (L \cdot H) \quad 0 \leq H \leq H_T \text{ changes with altitude} \]

• **Stratosphere** (greater than \(H_T = 36,089 \) ft)

 - Isothermal layer (i.e. constant temperature)

 \[- T_S = T_0 + (L \cdot H_T) \quad H > H_T \text{ does not change with altitude} \]

• \(L = \frac{dT}{dH} = \text{thermal lapse rate} = -6.5 \text{ deg K per km} = 5.5^\circ F/1000 \text{ feet} = \)

• \(T_0 = \text{standard sea level temperature} = 288.15 \text{ deg K} = 518.67 \text{ deg R} = 15 \text{ deg C} = 59 \text{ deg F} \)
Basic Equation #3 – Temperature vs Altitude

• Below 36,089 feet,
 – Ambient Temperature (°R) = -3.566° * (Altitude/1000)

• Above 36,089 feet
 – Ambient Temperature (°R) = 389.988°
Basic Equation #4 – Sonic Velocity

• Sonic Velocity = \(a \)
 \[
a = \sqrt{\gamma \times R \times T}
\]
 – \(\gamma \) = ratio of specific heats for air = 1.4 (dimensionless)
 – \(a_0 \) = standard sea-level velocity 340.294 m/sec = 1116.45 ft/sec
Normalized Equations for Troposphere

- **Normalized Temperature Ratio**
 \[\Theta = \frac{T}{T_0} = 1 + L \left(\frac{H}{T_0} \right) \]

- **Normalized Pressure Ratio**
 \[\delta = \frac{P}{P_0} = \left[1 + \frac{H}{(T_0/L)} \right] \]

- **Normalized Density Ratio**
 \[\sigma = \delta / \Theta = \left[1 + H(T_0/L) \right]^{-(1+g/LR)} \]

- **Normalized Sonic Velocity**
 \[\mu = \frac{a}{a_0} = \sqrt{\Theta} \]
Normalized Equations for Stratosphere

• Normalized Temperature Ratio
\[\Theta_S = \frac{T_s}{T_0} = 1 + H_T \left(\frac{T_0}{L} \right) \]

• Normalized Pressure Ratio
\[\delta_S = \delta_T \exp \left[- \frac{(H - HT)}{(RT_S/g)} \right] \]

• Normalized Density Ratio
\[\sigma_S = \frac{\delta_S}{\Theta_S} = \frac{\delta_T}{\Theta_S} \{ \exp \left[- \frac{(H - HT)}{(RT_S/g)} \right] \} \]

• Normalized Sonic Velocity
\[\mu_S = \frac{a}{a_0} = \sqrt{\Theta_S} \]
Numerical Constants

$T_0/L = -145,442 \text{ ft}$

$-g/LR = 5.255913 \text{ (dimensionless)}$

$T_S = 389.97 \text{ deg R}$

$\delta_T = 0.223359 \text{ (dimensionless)}$

$RT_S/g = 20,805.7\text{ ft}$
Numerical Equations

Troposphere

\[\theta = 1 - (6.8753 \times 10^{-6})^5 \]

Pressure Altitude

\[\delta = 1 - (6.88 \times 10^{-6})^5 \]

Pressure Altitude

\[\sigma = \frac{\delta}{\theta} \]

\[\mu = \frac{a}{a_0} = \sqrt{\theta_s} \]

Stratosphere

\[\theta = \theta_s = \frac{T_s}{T_0} = 0.751865 \]

\[\delta = 0.22336 \exp\left(\frac{36,089 - \text{Pressure Altitude}}{20,805.7}\right) \]

\[\sigma = \frac{\delta}{\theta} \]

\[\mu = \frac{a}{a_0} = \sqrt{\theta_s} = 0.867107 \]
Tabulated Values

<table>
<thead>
<tr>
<th>H (ft)</th>
<th>(T_0) (deg R)</th>
<th>(P_0) (lb/ft²)</th>
<th>(P_0) (sl/ft³)</th>
<th>(a_0) (ft/sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>518.67</td>
<td>2116.22</td>
<td>0.00237691</td>
<td>1,116.45</td>
</tr>
<tr>
<td>5,000</td>
<td>(\theta)</td>
<td>(\delta)</td>
<td>(\sigma)</td>
<td>(\mu)</td>
</tr>
<tr>
<td>0.965622</td>
<td>0.832047</td>
<td>0.861669</td>
<td>0.982661</td>
<td></td>
</tr>
<tr>
<td>10,000</td>
<td>0.931244</td>
<td>0.687702</td>
<td>0.738447</td>
<td>0.965010</td>
</tr>
<tr>
<td>15,000</td>
<td>0.896866</td>
<td>0.564339</td>
<td>0.629235</td>
<td>0.947030</td>
</tr>
<tr>
<td>25,000</td>
<td>0.828110</td>
<td>0.371089</td>
<td>0.448116</td>
<td>0.910006</td>
</tr>
<tr>
<td>35,000</td>
<td>0.759354</td>
<td>0.235302</td>
<td>0.309872</td>
<td>0.871409</td>
</tr>
<tr>
<td>45,000</td>
<td>0.751865</td>
<td>0.145546</td>
<td>0.193580</td>
<td>0.867101</td>
</tr>
</tbody>
</table>
Graphed Values

Altitude or H (ft)

θ δ s μ
<table>
<thead>
<tr>
<th>Altitude (ft)</th>
<th>Pressure (in. Hg)</th>
<th>Temperature (F.)</th>
<th>Density, slugs per cubic foot</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>29.92</td>
<td>59.0</td>
<td>0.002378</td>
</tr>
<tr>
<td>1,000</td>
<td>28.96</td>
<td>55.4</td>
<td>0.002309</td>
</tr>
<tr>
<td>2,000</td>
<td>27.82</td>
<td>51.9</td>
<td>0.002242</td>
</tr>
<tr>
<td>3,000</td>
<td>26.82</td>
<td>48.3</td>
<td>0.002176</td>
</tr>
<tr>
<td>4,000</td>
<td>25.84</td>
<td>44.7</td>
<td>0.002102</td>
</tr>
<tr>
<td>5,000</td>
<td>24.89</td>
<td>41.2</td>
<td>0.002049</td>
</tr>
<tr>
<td>6,000</td>
<td>23.98</td>
<td>37.6</td>
<td>0.001988</td>
</tr>
<tr>
<td>7,000</td>
<td>23.09</td>
<td>34.0</td>
<td>0.001928</td>
</tr>
<tr>
<td>8,000</td>
<td>22.22</td>
<td>30.5</td>
<td>0.001869</td>
</tr>
<tr>
<td>9,000</td>
<td>21.38</td>
<td>26.9</td>
<td>0.001812</td>
</tr>
<tr>
<td>10,000</td>
<td>20.57</td>
<td>23.3</td>
<td>0.001756</td>
</tr>
<tr>
<td>11,000</td>
<td>19.79</td>
<td>19.8</td>
<td>0.001701</td>
</tr>
<tr>
<td>12,000</td>
<td>19.02</td>
<td>16.2</td>
<td>0.001648</td>
</tr>
<tr>
<td>13,000</td>
<td>18.29</td>
<td>12.6</td>
<td>0.001596</td>
</tr>
<tr>
<td>14,000</td>
<td>17.57</td>
<td>9.1</td>
<td>0.001545</td>
</tr>
<tr>
<td>15,000</td>
<td>16.88</td>
<td>5.5</td>
<td>0.001496</td>
</tr>
<tr>
<td>16,000</td>
<td>16.21</td>
<td>1.9</td>
<td>0.001448</td>
</tr>
<tr>
<td>17,000</td>
<td>15.56</td>
<td>-1.6</td>
<td>0.001401</td>
</tr>
<tr>
<td>18,000</td>
<td>14.94</td>
<td>-5.2</td>
<td>0.001355</td>
</tr>
<tr>
<td>19,000</td>
<td>14.33</td>
<td>-8.8</td>
<td>0.001310</td>
</tr>
<tr>
<td>20,000</td>
<td>13.74</td>
<td>-12.3</td>
<td>0.001267</td>
</tr>
<tr>
<td>25,000</td>
<td>11.10</td>
<td>-30.15</td>
<td></td>
</tr>
<tr>
<td>30,000</td>
<td>8.89</td>
<td>-47.98</td>
<td></td>
</tr>
<tr>
<td>35,000</td>
<td>7.04</td>
<td>-68.72</td>
<td></td>
</tr>
<tr>
<td>40,000</td>
<td>5.54</td>
<td>-69.70</td>
<td></td>
</tr>
<tr>
<td>45,000</td>
<td>4.35</td>
<td>-69.70</td>
<td></td>
</tr>
<tr>
<td>50,000</td>
<td>3.43</td>
<td>-69.70</td>
<td></td>
</tr>
<tr>
<td>55,000</td>
<td>2.69</td>
<td>-69.70</td>
<td></td>
</tr>
<tr>
<td>60,000</td>
<td>1.92</td>
<td>-69.70</td>
<td></td>
</tr>
<tr>
<td>65,000</td>
<td>1.17</td>
<td>-69.70</td>
<td></td>
</tr>
<tr>
<td>70,000</td>
<td>0.81</td>
<td>-69.70</td>
<td></td>
</tr>
<tr>
<td>75,000</td>
<td>0.50</td>
<td>-69.70</td>
<td></td>
</tr>
<tr>
<td>80,000</td>
<td>0.32</td>
<td>-64.80</td>
<td></td>
</tr>
<tr>
<td>85,000</td>
<td>0.14</td>
<td>-64.80</td>
<td></td>
</tr>
<tr>
<td>90,000</td>
<td>0.06</td>
<td>-64.80</td>
<td></td>
</tr>
<tr>
<td>95,000</td>
<td>0.00</td>
<td>-64.80</td>
<td></td>
</tr>
<tr>
<td>100,000</td>
<td>0.32</td>
<td>-48.34</td>
<td></td>
</tr>
</tbody>
</table>
Test Yourself

Q: Compute the Standard Atmosphere Temperature at H=35,000 ft

A:

1. \[\theta = \frac{T}{T_0} \]
2. \[T = \theta \times T_0 = 0.759354 \times 518.67 \text{ (deg R)} \]
3. \[T = 3886.9 \text{ (deg R)} \]
4. \[T = 1 \text{ (degR)}/-272.594444\text{(deg C)} \times 2951.52 = - 14.2304 \text{ (deg C)} \]

Conversion C to R
Homework

• Plot θ, δ, σ (x-axis) vs Altitude (y-axis from -1000 ft to 43,000 ft)