Aircraft Performance: Atmospheric Pressure

FAA Handbook of Aeronautical Knowledge Chap 10

Atmosphere

- Envelope surrounds earth
- Air has mass, weight, indefinite shape
- Atmosphere
 - 78% Nitrogen
 - 21% Oxygen
 - 1% other gases (argon, helium, etc)
- Most oxygen < 35,000 ft

Atmospheric Pressure

- Factors in:
 - Weather
 - Aerodynamic Lift
 - Flight Instrument
 - Altimeter
 - Vertical Speed Indicator
 - Airspeed Indicator
 - Manifold Pressure Guage

Pressure

- Air has mass
 - Affected by gravity
- Air has weight \rightarrow Force
- Under Standard Atmospheric conditions

 at Sea Level weight of atmosphere = 14.7 psi
- As air become less dense:
 - Reduces engine power (engine takes in less air)
 - Reduces thrust (propeller is less efficient in thin air)
 - Reduces Lift (thin air exerts less force on the airfoils)

International Standard Atmosphere (ISA)

- Standard atmosphere at Sea level:
 - Temperature 59 degrees F (15 degrees C)
 - Pressure 29.92 in Hg (1013.2 mb)
- Standard Temp Lapse Rate
 - 3.5 degrees F (or 2 degrees C) per 1000 ft altitude gain
 - Upto 36,000 ft (then constant)
- Standard Pressure Lapse Rate

– -1 in Hg per 1000 ft altitude gain

Non-standard Conditions

• Correction factors must be applied

• Note: aircraft performance is compared and evaluated with respect to standard conditions

Note: instruments calibrated for standard conditions

Pressure Altitude

- Height above Standard Datum Plane (SDP)
- If the Barometric Reference Setting on the Altimeter is set to 29.92 in Hg, then the altitude is defined by the ISA standard pressure readings (see Figure 10-2, pg 10-3)

Altitude (ft)	Pressure ("Hg)	Temperature	
		(°C)	(°F)
0	29.92	15.0	59.0
1,000	28.86	13.0	55.4
2,000	27.82	11.0	51.9
3,000	26.82	9.1	48.3
4,000	25.84	7.1	44.7
5,000	24.89	5.1	41.2
6,000	23.98	3.1	37.6
7,000	23.09	1.1	34.0
8,000	22.22	-0.9	30.5
9,000	21.38	-2.8	26.9
10,000	20.57	-4.8	23.3
11,000	19.79	-6.8	19.8
12,000	19.02	-8.8	16.2
13,000	18.29	-10.8	12.6
14,000	17.57	-12.7	9.1
15,000	16.88	-14.7	5.5
16,000	16.21	-16.7	1.9
17,000	15.56	-18.7	-1.6
18,000	14.94	-20.7	-5.2
19,000	14.33	-22.6	-8.8
20.000	13.74	-24.6	-12.3

Density Altitude

- Used for correlating aerodynamic performance
- Density altitude = pressure altitude corrected for non-standard temperature
- Density Altitude is vertical distance above sealevel (in standard conditions) at which a given density is to be found
- Aircraft performance increases as Density of air increases (lower density altitude)
- Aircraft performance decreases as Density of air decreases (higher density altitude)

Density Altitude

- 1. Find pressure altitude
- Correct altitude for nonstandard conditions (i.e. Outside Air Temperature)
- 3. Read of Density Altitude
- Note: a given pressure altitude may exist for a range of temperature by allowing density to vary
- Note: A known density occurs for only one temperature and pressure

Density Altitude - Example

- Altimeter set to 29.92 in Hg, shows altitude of 5000' when temperature is at standard temp
- Altimeters set to 29.92 in Hg, shows altitude of 7000' when temperature is +20 degrees C above standard

High Density Altitude (worse performance)

- High elevations
- Low atmospheric pressures
- High temperatures

Low Density Altitude (better performance)

- Lower elevations
- High atmospheric pressure
- Low humidity

Ideal Gas Law

- D = Mass/Volume
- Density of a Gas = Molar Mass Pressure / Universal Gas Constant • Temp
 - Density is proportional to pressure
 - Density is inversely proportional to temperature
- PV = nrT
 - Pressure
 - Volume
 - Temperature
 - n, r = constants

Effects of Pressure on Density

- Density is proportional to Pressure
 - At constant temperature
 - 2 X pressure = 2 X density
 - ¹/₂ X pressure = ¹/₂ X density

Effect of Temp on Density

- Density varies inversely with Temperature
 - Increasing temp decreases density
 - Decreasing temp increases density

Effect of Humidity on Density

- Water vapor is lighter than air
 - Moist air lighter than dry air
- Humidity increases \rightarrow Air density decreases
 - Reduces performance
- Humidity defined as % of maximum amount of water the air can hold
 - Varies with temperature
 - Warm air holds more water vapor
 - Cold air holds less water vapor